The UV absorption spectra of more than 80 substituted coumarins and chromones have been investigated with the PCM-TD-DFT theoretical scheme using three hybrid functionals (O3LYP, B3LYP, and PBE0) and taking into account methanol or ethanol solvation effects. For most of the studied derivatives, there are at least two allowed excited states presenting a strong oscillator strength in the UV region. The first allowed excitation is associated to a HOMO-LUMO transition whereas the second corresponds to a transition from the HOMO-1 to the LUMO. Both involve a charge transfer from the benzenic cycle to the pyranone moiety. Statistically treating the PBE0 results allows a prediction of the lambda(max) with small standard deviations: in methanol, 6 nm (0.07 eV) for the first excitation (lambda(max)(1)) and 5 nm (0.08 eV) for the second one (lambda(max)(2)), whereas in ethanol 6 nm (0.08 eV) for (lambda(max)(1)) and 6 nm (0.13 eV) for (lambda(max)(2)). 相似文献
[reaction: see text] One-pot hypervalent iodine-mediated oxidations of arylsulfinamides to arylsulfonimidates is reported. Contrary to the case of alkylsulfinamides, use of iodosobenzene was not satisfactory. The reaction worked best with diacetoxyiodosobenzene (DIB) and a mild base (MgO). The influence of substituents on the iodine(III) reagent arene has been examined. 相似文献
The incorporation of lanthanides into polyoxometalates provides entry to new classes of potentially useful materials that combine the intrinsic properties of both constituents. To utilize the [alpha1-Ln(H2O)4P2W17O61]7- species in applications of catalysis and development of luminescent materials, the chemistry of this family of lanthanide polyoxometalates in organic solvents has been developed. Organic-soluble polyoxometalate-lanthanide complexes TBA5H2[alpha1-Ln(H2O)4P2W17O61] (Ln = La(III), Sm(III), Eu(III), Yb(III)) were prepared and characterized by elemental analysis, acid-base titration, IR, 31P NMR, and mass spectrometry. The synthetic procedure involves a cation metathesis reaction in aqueous solution under strict pH control. A solid-liquid-phase transfer protocol yielded a unique species (TBA)8K3[Yb(alpha1-YbP2W17O61)2] with three ytterbium ions and two [alpha1-P2W17O61]10- polyoxotungstates. A centrosymmetric dimeric complex [{alpha1-La(H2O)4P2W17O61}2]14- was crystallized from aqueous solution and characterized by X-ray diffraction. ESI mass spectral analysis of the complexes TBA5H2[alpha1-Ln(H2O)4P2W17O61] shows that similar dimers exist in organic solution, in particular for the early lanthanides. Fragmentation in the mass spectrometer of the complexes from dry acetonitrile solution involves double protonation of an oxo ligand and loss of one water molecule. Low mass tungstate fragments combine into [(WO3)n]2- (n = 1-5) ions and their condensation products with phosphate. Reaction of TBA5H2[alpha1-Eu(H2O)4P2W17O61] with 1,10-phenanthroline or 2,2'-bipyridine showed an increase of the europium luminescence. This result is explained by the formation of a ternary complex of [alpha1-Eu(H2O)4P2W17O61]7- and two sensitizing ligands. 相似文献
Flavonoids are an important group of natural compounds, which can prevent coronary heart disease and have antioxidant properties. Hawthorn is a well known and widely used medicinal plant due to its cardiotonic activity. Previous studies refer mostly to the HPLC analysis of the flavonoids: vitexin, quercetin, hyperoside, oligomeric procyanidins, which appear to be primarily responsible for the cardiac action of the plant. Aqueous ethanolic extracts of single-styled hawthorn (Crataegus monogyna Jacq., f.: Rosaceae Juss.) leaves and sprouts were analyzed by means of capillary zone electrophoresis (CZE). Influence of vegetation period on the extract qualitative composition and flavonoids quantities was evaluated. Sample preparation by extraction using different concentration of aqueous ethanol (40-96%, v/v) and the influence of extractant composition on the recovery of flavonoids are discussed in detail. The results obtained using CZE are compared to the results of spectrophotometric and HPLC analysis of the extracts. The effect of storage conditions of extracts (solar irradiation, temperature and duration) on degradation of flavonoids was investigated. 相似文献
Composition of tocochromanols in kernels recovered from 16 different apricot varieties (Prunus armeniaca L.) was studied. Three tocopherol (T) homologues, namely α, γ and δ, were quantified in all tested samples by an RP-HPLC/FLD method. The γ-T was the main tocopherol homologue identified in apricot kernels and constituted approximately 93% of total detected tocopherols. The RP-UPLC-ESI/MSn method detected trace amounts of two tocotrienol homologues α and γ in the apricot kernels. The concentration of individual tocopherol homologues in kernels of different apricots varieties, expressed in mg/100 g dwb, was in the following range: 1.38–4.41 (α-T), 42.48–73.27 (γ-T) and 0.77–2.09 (δ-T). Moreover, the ratio between individual tocopherol homologues α:γ:δ was nearly constant in all varieties and amounted to approximately 2:39:1. 相似文献
Protein glycosylation is a ubiquitous post‐translational modification that is involved in the regulation of many aspects of protein function. In order to uncover the biological roles of this modification, imaging the glycosylation state of specific proteins within living cells would be of fundamental importance. To date, however, this has not been achieved. Herein, we demonstrate protein‐specific detection of the glycosylation of the intracellular proteins OGT, Foxo1, p53, and Akt1 in living cells. Our generally applicable approach relies on Diels–Alder chemistry to fluorescently label intracellular carbohydrates through metabolic engineering. The target proteins are tagged with enhanced green fluorescent protein (EGFP). Förster resonance energy transfer (FRET) between the EGFP and the glycan‐anchored fluorophore is detected with high contrast even in presence of a large excess of acceptor fluorophores by fluorescence lifetime imaging microscopy (FLIM). 相似文献
A reliable model that can be used to estimate the electronic properties (i.e., the HOMO, LUMO, and band gap energies) of conjugated polymers would be a great tool for applications in organic electronics such as light‐emitting diodes, field‐effect transistors, and photovoltaic cells. Recently, poly(2,7‐carbazole) derivatives have shown promising results when used as an active donor layer in bulk heterojunction photovoltaic cells with power conversion efficiency exceeding 7%. By using a simple correlation between density functional theory (DFT) theoretical calculations performed on six model compounds (using the repeating unit) and experimental data from the six corresponding polymers, an accurate estimation of the HOMO energy level, the LUMO energy levels, and the band gap of several poly(2,7‐carbazole) derivatives was obtained. According to the theoretical data obtained for more than one hundred repeating units, fourteen new copolymers that can be used as p‐type materials in bulk heterojunction solar cells were selected and synthesized. Experimental data obtained from these materials were then used to refine the correlation between DFT and experimental data of poly(2,7‐carbazole) derivatives.