收费全文 | 119310篇 |
免费 | 19526篇 |
国内免费 | 13803篇 |
化学 | 80642篇 |
晶体学 | 1513篇 |
力学 | 7799篇 |
综合类 | 1004篇 |
数学 | 14080篇 |
物理学 | 47601篇 |
2025年 | 45篇 |
2024年 | 1265篇 |
2023年 | 2574篇 |
2022年 | 4251篇 |
2021年 | 4859篇 |
2020年 | 5475篇 |
2019年 | 5291篇 |
2018年 | 3959篇 |
2017年 | 3735篇 |
2016年 | 5592篇 |
2015年 | 5545篇 |
2014年 | 6776篇 |
2013年 | 8514篇 |
2012年 | 10172篇 |
2011年 | 10536篇 |
2010年 | 7373篇 |
2009年 | 7315篇 |
2008年 | 7983篇 |
2007年 | 6964篇 |
2006年 | 6585篇 |
2005年 | 5332篇 |
2004年 | 4130篇 |
2003年 | 3316篇 |
2002年 | 3355篇 |
2001年 | 2731篇 |
2000年 | 2362篇 |
1999年 | 2281篇 |
1998年 | 1838篇 |
1997年 | 1780篇 |
1996年 | 1751篇 |
1995年 | 1442篇 |
1994年 | 1289篇 |
1993年 | 1088篇 |
1992年 | 936篇 |
1991年 | 821篇 |
1990年 | 664篇 |
1989年 | 560篇 |
1988年 | 403篇 |
1987年 | 348篇 |
1986年 | 349篇 |
1985年 | 282篇 |
1984年 | 166篇 |
1983年 | 154篇 |
1982年 | 115篇 |
1981年 | 66篇 |
1980年 | 50篇 |
1979年 | 31篇 |
1978年 | 21篇 |
1977年 | 14篇 |
1957年 | 29篇 |
The article describes a method for rapid and visual determination of Hg(II) ion using unmodified gold nanoparticles (Au-NPs). It involves the addition of Au-NPs to a solution containing Hg(II) ions which, however, does not induce a color change. Next, a solution of lysine is added which induces the aggregation of the Au-NPs and causes the color of the solution to change from wine-red to purple. The whole on-site detection process can be executed in less than 15 min. Other amines (ethylenediamine, arginine, and melamine) were also investigated with respect to their capability to induce aggregation. Notably, only amines containing more than one amino group were found to be effective, but a 0.4 μM and pH 8 solution of lysine was found to give the best results. The detection limits for Hg (II) are 8.4 pM (for instrumental read-out) and 10 pM (for visual read-out). To the best of our knowledge, this LOD is better than those reported for any other existing rapid screening methods. The assay is not interfered by the presence of other common metal ions even if present in 1000-fold excess over Hg(II) concentration. It was successfully applied to the determination of Hg(II) in spiked tap water samples. We perceive that this method provides an excellent tool for rapid and ultrasensitive on-site determination of Hg(II) ions at low cost, with relative ease and minimal operation.
Rapid and ultrasensitive detection of mercury ions using gold nanoparticle based label-free colorimetric method with excellent sensitivity, easy operation and low cost.
A sensitive, specific and rapid colorimetric aptasensor for the determination of the plasticizer bisphenol A (BPA) was developed. It is based on the use of gold nanoparticles (AuNPs) that are positively charged due to the modification with cysteamine which is cationic at near-neutral pH values. If aptamers are added to such AuNPs, aggregation occurs due to electrostatic interactions between the negatively-charged aptamers and the positively-charged AuNPs. This results in a color change of the AuNPs from red to blue. If a sample containing BPA is added to the anti-BPA aptamers, the anti-BPA aptamers undergo folding via an induced-fit binding mechanism. This is accompanied by a conformational change, which prevents the aptamer-induced aggregation and color change of AuNPs. The effect was exploited to design a colorimetric assay for BPA. Under optimum conditions, the absorbance ratio of A 527/A 680 is linearly proportional to the BPA concentration in the range from 35 to 140 ng∙mL−1, with a detection limit of 0.11 ng∙mL−1. The method has been successfully applied to the determination of BPA in spiked tap water and gave recoveries between 91 and 106 %. Data were in full accordance with results obtained from HPLC. This assay is selective, easily performed, and in our perception represents a promising alternative to existing methods for rapid quantification of BPA.
The negatively-charged anti-BPA aptamers can absorb onto the positively-charged cysteamine-capped AuNPs (cysteamine-AuNPs) via electrostatic interactions, which can cause the aggregation of AuNPs accompanied by a red-to-blue color change. In the presence of BPA, the specific binding of BPA to the aptamers induces the conformation changes of anti-BPA aptamers, which can release the aptamers from cysteamine-AuNPs and thus prevent the aggregation and color change of cysteamine-AuNPs.
Hemoglobin (Hb) has been demonstrated to endow electrochemical sensors with pH-switchable response because of the presence of carboxyl and amino groups. Hb was deposited in a chitosan matrix on a glassy carbon electrode (GCE) that was previously coated with clustered gold nanoparticles (Au-NPs) by electrodeposition. The switching behavior is active (“on”) to the negatively charged probe [Fe(CN)6 3−] at pH 4.0, but inactive (“off”) to the probe at pH 8.0. This switch is fully reversible by simply changing the pH value of the solution and can be applied for pH-controlled reversible electrochemical reduction of H2O2 catalyzed by Hb. The modified electrode was tested for its response to the different electroactive probes. The response to these species strongly depends on pH which was cycled between 4 and 8. The effect is also attributed to the presence of pH dependent charges on the surface of the electrode which resulted in either electrostatic attraction or repulsion of the electroactive probes. The presence of Hb, in turn, enhances the pH-controllable response, and the electrodeposited Au-NPs improve the capability of switching. This study reveals the potential of protein based pH-switchable materials and also provides a simple and effective strategy for fabrication of switchable chemical sensors as exemplified in a pH-controllable electrode for hydrogen peroxide.
A pH “on-off” switchable nanobiosensor was fabricated by casting a chitosan-hemoglobin biocomposite onto nano-gold electrode. This composite film exhibits not only excellent pH-responsive on (pH 4.0)-off (pH 8.0) behavior but also excellent pH-tunable on-off bioelectrocatalysis of H2O2.
We report on a new electrochemical immunosensor for the carcinoembryonic antigen (CEA; a model analyte). First, poly(o-phenylenediamine) nanospheres (PPDNSs) were synthesized by using a wet-chemistry method. The nanospheres were utilized as the support for immobilizing horseradish peroxidase-labeled polyclonal rabbit anti-human CEA antibody (HRP-anti-CEA) on a pretreated glassy carbon electrode (GCE) using glutaraldehyde as a crosslinker. In the presence of target CEA, an antigen-antibody immunocomplex formed on the electrode. This results in a partial inhibition of the active center of HRP and decreases the activity of HRP in terms of H2O2 reduction. The performance and factors influencing the performance of the immunoelectrode were studied. Under optimal conditions, the reduction current obtained from the anti-CEA-conjugated HRP (best at a working voltage of −265 mV vs. Ag/AgCl) is proportional to the CEA concentration in the 0.01 to 60 ng mL−1 range, with a detection limit of 3.2 pg mL−1. Non-specific adsorption was not observed. Relative standard deviations for intra-assay and inter-assay are <8.3 % and <9.7 %, respectively. The method was applied to the analysis of nine human serum samples, and a good relationship was found between the electrochemical immunoassay and the commercialized ELISA kit for human CEA.
A new electrochemical immunosensor based on poly(o-phenylenediamine) nanospheres was developed for the rapid detection of carcinoembryonic antigen via the inhibition of enzymatic activity.
We describe an electrochemical sensor for simultaneous determination of hydroquinone (HQ) and catechol (CC). A glassy carbon electrode (GCE) was modified with gold nanoparticles, L-cysteine, and ZnS/NiS@ZnS quantum dots using a layer-by-layer technique. The materials were characterized by X-ray diffractometry, field emission scanning electron microscopy, and electrochemical impedance and Fourier transform infrared spectroscopy. Cyclic voltammetry and differential pulse voltammetry revealed this modified GCE to represent a highly sensitive sensor for the simultaneous determination of HQ and CC. The anodic peak current for HQ at a working voltage of 80 mV (vs. Ag/AgCl) is related to its concentration in the 0.1 to 300 μM range (even in the presence of 0.1 mM of CC). The anodic peak current for CC at a working voltage of 184 mV is related to its concentration in the 0.5 to 400 μM range (even in the presence of 0.1 mM of HQ). The detection limits (at an S/N ratio of 3) are 24 and 71 nM for HQ and CC, respectively. The modified GCE was successfully applied to the determination of HQ and CC in aqueous solutions and gave satisfactory results.
A glassy carbon electrode was modified with gold nanoparticles, ZnS/NiS@ZnS quantum dots and L-cysteine and used for simultaneous determination of hydroquinone and catechol.