首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   9篇
  国内免费   5篇
化学   88篇
晶体学   1篇
力学   5篇
数学   10篇
物理学   26篇
  2024年   1篇
  2023年   9篇
  2022年   14篇
  2021年   9篇
  2020年   4篇
  2019年   5篇
  2018年   6篇
  2017年   1篇
  2016年   5篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   6篇
  2011年   11篇
  2010年   5篇
  2009年   5篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   6篇
  2002年   1篇
  2001年   2篇
  2000年   6篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
排序方式: 共有130条查询结果,搜索用时 31 毫秒
91.
Two novel mono-PEGylated derivatives of hGRF(1-29)-NH(2) [human growth hormone-releasing factor, fragment 1-29] have been synthesized by regio-specific conjugation of Lys(12) or Lys(21) to a monomethoxy-PEG(5000) chain (compounds Lys(12)PEG-GRF and Lys(21)PEG-GRF). The PEG moiety has been covalently linked at the amino group of a norleucine residue via a carbamate bond. The Lys(12)PEG-GRF regioisomer was found to be slightly less active in vitro than both the unmodified peptide and Lys(21)PEG-GRF. To assess whether the differences in the biological activity of the PEGylated analogues could be related to conformational rearrangements induced by the PEG moiety, the structure of these PEGylated derivatives has been worked out (TFE solution) by means of NMR spectroscopy and molecular dynamics. Secondary structure shifts, hydrogen/deuterium exchange kinetics, temperature coefficients of amide protons, and NOE-based molecular models point out that hGRF(1-29)-NH(2), Lys(21)PEG-GRF and Lys(12)PEG-GRF share a remarkably similar pattern of secondary structure. All three compounds adopt an alpha-helix conformation which spans the whole length of the molecule, and which becomes increasingly rigid on going from the N-terminus to the C-terminus. Residues Lys(12) and Lys(21) are enclosed in all the compounds considered into well-defined alpha-helical domains, indicating that PEGylation either at Lys(12) or Lys(21) does not alter the tendency of the peptide to adopt a stable alpha-helix conformation, nor does it induce appreciable conformational mobility in the proximity of the PEGylation sites. No significant variation of the amphiphilic organization of the alpha-helix is observed among the three peptides. Therefore, the different biological activities observed for the PEGylated analogues are not due to conformational effects, but are rather due to sterical hindrance effects. The relationship between the biological activitiy of the mono-PEGylated derivatives and sterical hindrance is discussed in terms of the topology of interaction between hGRF(1-29)-NH(2) and its receptor.  相似文献   
92.
The structures of metal-thiolate clusters in Zn(7)-MT, Cd(7)-MT, Cu(12)-MT, Ag(12)-MT, and Ag(17)-MT from rabbit liver have been investigated by sulfur K-edge X-ray absorption spectroscopy (XAS). In addition to providing metal-cysteinyl sulfur bond lengths, the sulfur K-edge EXAFS data provide the first direct evidence for mixtures of bridging and terminal sulfurs in Cu-MT and Ag-MT. The Zn-S and Cd-S bond lengths for tetrahedrally coordinated Zn(4)(SPh)(10)(2-) and Cd(4)(SPh)(10)(2-) compounds obtained from sulfur K-edge EXAFS data are 2.35 +/- 0.03 and 2.52 +/- 0.02 ?, respectively. Zn-S and Cd-S bond distances of 2.34 +/- 0.03 ? for Zn(7)-MT and 2.54 +/- 0.02 ? for Cd(7)-MT, respectively, calculated from sulfur K-edge EXAFS measurements, are consistent with the previously reported results from metal K-edge EXAFS data. Analysis of the sulfur K-edge EXAFS data for Cu(12)-MT indicates that Cu(I) is trigonally coordinated to sulfurs at a distance of 2.25 +/- 0.01 ?. Significant changes in CD spectra observed between Ag(12)-MT 1 and Ag(17)-MT 1 indicate that the modification of the three-dimensional structure occurs when Ag(17)-MT 1 is formed from Ag(12)-MT 1 as Ag(I) is added to the Ag(12)-MT 1. The Ag-S bond distances of 2.45 +/- 0.02 and 2.44 +/- 0.03 ? in Ag(1)(2)-MT 1 and Ag(1)(7)-MT 1, respectively, calculated from the sulfur K-edge EXAFS measurements, lead us to conclude that the Ag(I) in both Ag(1)(2)-MT 1 and Ag(1)(7)-MT 1 is digonally coordinated by thiolates. The number of metals bonded to sulfur in both model compounds and metal-containing metallothioneins is estimated from sulfur K-edge EXAFS measurements to be in the range 1.2-1.7, depending on the fraction of bridging sulfurs present in compounds. Unlike the spectral data recorded during Cu(I) binding, where sharp changes take place past 12 Cu(I), the CD data for Ag-MT 1 show little variation over the entire range of Ag(I):MT molar ratios. This result, established by both low- and high-energy optical methods, suggests that the three-dimensional structure of the metal-binding sites in metallothioneins is strongly influenced by the fraction of bridging sulfur. This analysis is the first to provide direct support for the presence of a clustered Ag-S structure for the Ag(17)-MT 1 species. These data also suggest that the structures in Ag(I) and Cu(I) metallothioneins are probably quite different.  相似文献   
93.
Fullerene molecules have nano-scale cavities in which various metal or metal clusters of different sizes can be embedded to form metallofullerenes with unique core-shell structures. The physical and chemical properties of metallofullerenes can be modified through the interaction between the encapsulated metals and the fullerene cages. As such, the investigation of metallofullerenes with novel structures has been a principal research focus in the field of fullerenes. In this study, we investigated the size matching effect between encapsulated clusters and fullerene cages for the endohedral metal carbonitride clusterfullerenes in order to discover new metallofullerenes. The stability and electronic structure of the metallofullerenes formed by encapsulating M3NC clusters (M = Y, La, Gd) into D2(186)-C96 and D2(35)-C88 fullerenes were studied using quantum chemical calculations. It was found that the fullerene cages formed stable structures by accepting six electrons transferred from the encapsulated clusters. The change in configuration of the encapsulated clusters was clarified by a comparison with the corresponding M3N@C2n metal nitride clusterfullerenes; the size matching effect between M3NC cluster and fullerene cage was elucidated on the basis of the calculated results and previous studies on Sc3NC@Ih(7)-C80. For the D2(186)-C96 fullerene, the Gd3NC cluster was found to have smaller changes in the configuration as compared with the La3NC cluster, proving that Gd3NC is more suitable than La3NC for encapsulation in the D2(186)-C96 fullerene cage. In addition, it was determined that the La3NC cluster requires a large structural change to maintain its planar configuration. For the D2(35)-C88 fullerene cage, the Y3NC cluster is more suitable than Gd3NC for encapsulation owing to the smaller size of the Y3NC cluster. The spatial distribution of the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) of Gd3NC@D2(186)-C96 were found to be similar to those of Gd3N@D2(186)-C96. However, a unique endohedral cluster-based occupied molecular orbital was found for Gd3NC@D2(186)-C96. This orbital is derived from the interaction between the NC unit and the Gd atoms. The spatial distribution of the HOMO of Y3NC@D2(35)-C88 is similar to that of Y3N@D2(35)-C88, while the LUMO of Y3NC@D2(35)-C88 has a much larger contribution from the endohedral cluster as compared to Y3N@D2(35)-C88. Thus, the addition of a carbon atom in the cluster has a remarkable impact on the electronic structure of the metallofullerenes. With respect to structural characteristics, we found that the three fullerene cages, D2(186)-C96, D2(35)-C88, and Ih(7)-C80, have a uniform distribution of five-membered carbon atom rings; these fullerenes can be greatly stabilized in the form of C2n6- anions. However, the formation mechanism of fullerenes and metallofullerenes, at present, is poorly understood. Based on the structural analysis, we propose a direct mechanism for the formation of fullerenes without the Stone-Wales isomerization, i.e., the rearrangement of five-membered rings through the addition of carbon atoms and the transformation into larger carbon cages while maintaining stable structural units.  相似文献   
94.
Meat adulteration detection is a common concern of consumers. Here, we proposed a multiplex digital polymerase chain reaction method and a low-cost device for meat adulteration detection. Using a polydimethylsiloxane microfluidic device, polymerase chain reaction reagents could be pump-free loaded into microchambers (40 × 40 chambers) automatically. Due to the independence of multiplex fluorescence channels, deoxyribonucleic acid templates extracted from different animal species could be distinguished by one test. In this paper, we designed primers and probes for four types of meat (beef, chicken, pork, and duck) and labeled each of the four fluorescent markers (hexachlorocyclohexane [HEX], 6-carboxyfluorescein [FAM], X-rhodamine [ROX], and cyanine dyes 5 [CY5]) on the probes. Specific detection and mixed detection experiments were performed on four types of meat, realizing a limit of detection of 3 copies/µL. A mixture of four different species can be detected by four independent fluorescence channels. The quantitative capability of this method is found to meet the requirements of meat adulteration detections. This method has great potential for point-of-care testing together with portable microscopy equipment.  相似文献   
95.
We consider steady, two-dimensional motions of an incompressible, Newtonian fluid flowing under gravity down an inclined channel. If the bottom of the channel is flat, the flow is the classical Poiseuille-Nusselt flow and the free surface is then a plane parallel to the bottom. Motivated by the recent experimental and numerical studies of Pritchard, Scott & Tavener, we look at bottom configurations which possess some localized, non-uniform structure. We present an existence theory for steady, highly viscous flow over such configurations. An important consequence of our theory is that the steady flows whose existence is established decay exponentially rapidly to the unperturbed Poiseuille-Nusselt flow away from the local variation in the channel bottom profile.  相似文献   
96.
可见光驱动的偶氮苯等光致异构材料在生物探针和传感体系、光敏电池以及储能材料等领域有重要的应用前景.采用密度泛函理论(DFT)以及反应性分子动力学方法,研究了卤素原子(F,Cl,Br,I)四邻位取代的4,4′-乙酰胺偶氮苯衍生物分子的几何结构与光学性能之间的关系.DFT计算表明,卤素原子F,Cl,Br,I的邻位四取代不同程度地使其反式异构体的偶氮苯分子平面发生扭曲,导致在可见光范围内均出现了明显的吸收峰.另外,应用反应性分子动力学模拟了卤素(F,Cl,Br,I)-4,4′-乙酰胺偶氮苯分子的顺反可逆异构过程,其反式到顺式的构型转换率在46%~86%之间,与实验现象定性相符.  相似文献   
97.
本文成功利用金属中心为NiRu的NiFe氢化酶模拟物,在乙腈和水的混合溶剂中实现了人工光合成制氢。最优条件下,体系基于NiRu催化剂的产氢TON值高达1893,前10 min的TOF为2.6 s-1,并且通过电化学测试对催化循环过程中所生成的金属氢化物中间体进行了表征。  相似文献   
98.
It is well known that dynamical systems may be employed as computing machines. However, not all dynamical systems offer particular advantages compared to the standard paradigm of computation, in regard to efficiency and scalability. Recently, it was suggested that a new type of machines, named digital –hence scalable– memcomputing machines (DMMs), that employ non‐linear dynamical systems with memory, can solve complex Boolean problems efficiently. This result was derived using functional analysis without, however, providing a clear understanding of which physical features make DMMs such an efficient computational tool. Here, we show, using recently proposed topological field theory of dynamical systems, that the solution search by DMMs is a composite instanton. This process effectively breaks the topological supersymmetry common to all dynamical systems, including DMMs. The emergent long‐range order – a collective dynamical behavior– allows logic gates of the machines to correlate arbitrarily far away from each other, despite their non‐quantum character. We exemplify these results with the solution of prime factorization, but the conclusions generalize to DMMs applied to any other Boolean problem.  相似文献   
99.
As a major public health problem, the prevalence of Acinetobacter baumannii (A. baumannii) infections in hospitals due to the pathogen’s multiple-antibiotic resistance has attracted extensive attention. We previously reported a series of 1,3-diamino-7H-pyrrolo[3,2-f]quinazoline (PQZ) compounds, which were designed by targeting Escherichia coli dihydrofolate reductase (ecDHFR), and exhibited potent antibacterial activities. In the current study, based on our molecular-modeling study, it was proposed that PQZ compounds may function as potent A. baumannii DHFR (abDHFR)-inhibitors as well, which inspired us to consider their anti-A. baumannii abilities. We further found that three PQZ compounds, OYYF-171, -172, and -175, showed significant antibacterial activities against A. baumannii, including multidrug-resistant (MDR) strains, which are significantly stronger than the typical DHFR-inhibitor, trimethoprim (TMP), and superior to, or comparable to, the other tested antibacterial agents belonging to β-lactam, aminoglycoside, and quinolone. The significant synergistic effect between the representative compound OYYF-171 and the dihydropteroate synthase (DHPS)-inhibitor sulfamethoxazole (SMZ) was observed in both the microdilution-checkerboard assay and time-killing assay, which indicated that using SMZ in combination with PQZ compounds could help to reduce the required dosage and forestall resistance. Our study shows that PQZ is a promising scaffold for the further development of folate-metabolism inhibitors against MDR A. baumannii.  相似文献   
100.
To design molecular spin qubits with enhanced quantum coherence, a control of the coupling between the local vibrations and the spin states is crucial, which could be realized in principle by engineering molecular structures via coordination chemistry. To this end, understanding the underlying structural factors that govern the spin relaxation is a central topic. Here, we report the investigation of the spin dynamics in a series of chemically designed europium(II)-based endohedral metallofullerenes (EMFs). By introducing a unique structural difference, i. e. metal-cage binding site, while keeping other molecular parameters constant between different complexes, these manifest the key role of the three low-energy metal-displacing vibrations in mediating the spin-lattice relaxation times (T1). The temperature dependence of T1 can thus be normalized by the frequencies of these low energy vibrations to show an unprecedentedly universal behavior for EMFs in frozen CS2 solution. Our theoretical analysis indicates that this structural difference determines not only the vibrational rigidity but also spin-vibration coupling in these EMF-based qubit candidates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号