首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396834篇
  免费   8378篇
  国内免费   3989篇
化学   215247篇
晶体学   6361篇
力学   17951篇
综合类   226篇
数学   42851篇
物理学   126565篇
  2021年   3419篇
  2020年   3778篇
  2019年   3982篇
  2018年   4700篇
  2017年   4525篇
  2016年   7006篇
  2015年   4949篇
  2014年   7117篇
  2013年   17867篇
  2012年   13959篇
  2011年   16608篇
  2010年   11308篇
  2009年   11139篇
  2008年   14620篇
  2007年   14585篇
  2006年   13861篇
  2005年   12363篇
  2004年   11266篇
  2003年   9948篇
  2002年   9632篇
  2001年   11500篇
  2000年   9000篇
  1999年   7302篇
  1998年   5814篇
  1997年   5898篇
  1996年   5573篇
  1995年   5164篇
  1994年   4861篇
  1993年   4632篇
  1992年   5326篇
  1991年   5170篇
  1990年   5056篇
  1989年   4884篇
  1988年   4832篇
  1987年   4851篇
  1986年   4444篇
  1985年   5917篇
  1984年   6105篇
  1983年   5029篇
  1982年   5341篇
  1981年   5221篇
  1980年   5037篇
  1979年   5215篇
  1978年   5527篇
  1977年   5380篇
  1976年   5366篇
  1975年   5032篇
  1974年   4941篇
  1973年   5092篇
  1972年   3358篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
51.
In this paper, we present an approach of dynamic mesh adaptation for simulating complex 3‐dimensional incompressible moving‐boundary flows by immersed boundary methods. Tetrahedral meshes are adapted by a hierarchical refining/coarsening algorithm. Regular refinement is accomplished by dividing 1 tetrahedron into 8 subcells, and irregular refinement is only for eliminating the hanging points. Merging the 8 subcells obtained by regular refinement, the mesh is coarsened. With hierarchical refining/coarsening, mesh adaptivity can be achieved by adjusting the mesh only 1 time for each adaptation period. The level difference between 2 neighboring cells never exceeds 1, and the geometrical quality of mesh does not degrade as the level of adaptive mesh increases. A predictor‐corrector scheme is introduced to eliminate the phase lag between adapted mesh and unsteady solution. The error caused by each solution transferring from the old mesh to the new adapted one is small because most of the nodes on the 2 meshes are coincident. An immersed boundary method named local domain‐free discretization is employed to solve the flow equations. Several numerical experiments have been conducted for 3‐dimensional incompressible moving‐boundary flows. By using the present approach, the number of mesh nodes is reduced greatly while the accuracy of solution can be preserved.  相似文献   
52.
The aim of this work was to determine the parameters that have decisive roles in microwave-assisted reactions and to develop a model, using computational chemistry, to predict a priori the type of reactions that can be improved under microwaves. For this purpose, a computational study was carried out on a variety of reactions, which have been reported to be improved under microwave irradiation. This comprises six types of reactions. The outcomes obtained in this study indicate that the most influential parameters are activation energy, enthalpy, and the polarity of all the species that participate. In addition to this, in most cases, slower reacting systems observe a much greater improvement under microwave irradiation. Furthermore, for these reactions, the presence of a polar component in the reaction (solvent, reagent, susceptor, etc.) is necessary for strong coupling with the electromagnetic radiation. We also quantified that an activation energy of 20–30 kcal mol−1 and a polarity (μ) between 7–20 D of the species involved in the process is required to obtain significant improvements under microwave irradiation.  相似文献   
53.
Seven new copper(II) complexes of type [Cu(A)(L)]?H2O (A = sparfloxacin, ciprofloxacin, levofloxacin, gatifloxacin, pefloxacin, ofloxacin, norfloxacin; L = 5‐[(3‐chlorophenyl)diazenyl]‐4‐hydroxy‐1,3‐thiazole‐2(3H)‐thione) were synthesized and characterized using elemental and thermogravimetric analyses, and electronic, electron paramagnetic resonance (EPR), Fourier transform infrared and liquid chromatography–mass spectroscopies. Tetrahedral geometry around copper is assigned in all complexes using EPR and electronic spectral analyses. All complexes were investigated for their interaction with herring sperm DNA utilizing absorption titration (Kb = 1.27–3.13 × 105 M?1) and hydrodynamic volume measurement studies. The studies suggest the classical intercalative mode of DNA binding. The cleavage reaction on pUC19 DNA was monitored by agarose gel electrophoresis. The results indicate that the Cu(II) complexes can more effectively promote the cleavage of plasmid DNA. The superoxide dismutase mimic activity of the complexes was evaluated by nitroblue tetrazolium assay, and the complexes catalysed the dismutation of superoxide at pH = 7.8 with IC50 values in the range 0.597–0.900 μM. The complexes were screened for their in vitro antibacterial activity against five pathogenic bacteria. All the complexes are good cytotoxic agents and show LC50 values ranging from 5.559 to 11.912 µg ml?1. All newly synthesized Cu(II) complexes were also evaluated for their in vitro antimalarial activity against Plasmodium falciparum strain (IC50 = 0.62–2.0 µg ml?1). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
54.
55.
56.
57.
58.
Russian Journal of General Chemistry - The main sources of emissions of industrial nitrogen oxides have been reviewed. A promising method for the absorption of nitrogen monoxide by a reusable...  相似文献   
59.
In this communication, we report the synthesis of small‐sized (<10 nm), water‐soluble, magnetic nanoparticles (MNPs) coated with polyhedral oligomeric silsesquioxanes (POSS), which contain either polyethylene glycol (PEG) or octa(tetramethylammonium) (OctaTMA) as functional groups. The POSS‐coated MNPs exhibit superparamagnetic behavior with saturation magnetic moments (51–53 emu g?1) comparable to silica‐coated MNPs. They also provide good colloidal stability at different pH and salt concentrations, and low cytotoxicity to MCF‐7 human breast epithelial cells. The relaxivity data and magnetic resonance (MR) phantom images demonstrate the potential application of these MNPs in bioimaging.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号