首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1779篇
  免费   140篇
  国内免费   161篇
化学   1266篇
晶体学   9篇
力学   106篇
综合类   27篇
数学   203篇
物理学   469篇
  2024年   7篇
  2023年   49篇
  2022年   83篇
  2021年   67篇
  2020年   87篇
  2019年   75篇
  2018年   51篇
  2017年   53篇
  2016年   70篇
  2015年   85篇
  2014年   80篇
  2013年   105篇
  2012年   96篇
  2011年   123篇
  2010年   75篇
  2009年   73篇
  2008年   89篇
  2007年   95篇
  2006年   76篇
  2005年   72篇
  2004年   47篇
  2003年   46篇
  2002年   46篇
  2001年   38篇
  2000年   43篇
  1999年   38篇
  1998年   34篇
  1997年   27篇
  1996年   30篇
  1995年   28篇
  1994年   30篇
  1993年   23篇
  1992年   13篇
  1991年   18篇
  1990年   15篇
  1989年   10篇
  1988年   7篇
  1987年   9篇
  1986年   4篇
  1985年   8篇
  1984年   5篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1911年   2篇
  1910年   3篇
  1905年   2篇
  1904年   2篇
  1902年   2篇
排序方式: 共有2080条查询结果,搜索用时 31 毫秒
61.
Solanopubamine (3β-amino-5α, 22αH, 25βH-solanidan-23β-ol), a steroidal alkaloid was isolated from the alkaloidal fraction of Solanum schimperianum in significant yield. Its structure was established by IR, positive ESI-MS, 1D and 2D NMR. The presence of -3β-NH2 and -23β-OH groups was achieved through methylation, acetylation or coupling with octadecanoic and undec-11-enoic acids to produce six derivatives (27). Their structures were confirmed by spectroscopic analyses. Solanopubamine and semi-synthetic analogs are investigated for their in vitro cytotoxicity against a panel of human cancer cell lines and anti-microbial activity. Solanopubamine showed good antifungal activity only against Candida albicans and C. tenuis with MIC of 12.5 μg/mL. Semi-synthesized compounds (27) have failed to show anti-tumor and anti-microbial activities.  相似文献   
62.
A method was developed for the rapid separation of catecholamines by nonaqueous microchip electrophoresis (NAMCE) with LIF detection, A homemade pump‐free negative pressure sampling device was used for rapid bias‐free sampling in NAMCE, the injection time was 0.5 s and the electrophoresis separation conditions were optimized. Under the optimized conditions, the samples were separated completely in <1 min. The average migration times of the epinephrine (E), dopamine (DA), and norepinephrine (NE) were 34.26, 43.81, and 50.07 s, with an RSD of 1.05, 1.26, and 0.89% (n = 7), respectively. The linearity of the method ranged from 0.0125 to 2.0 mg/L for E and 0.025~4.0 mg/L for DA and NE, with correlation coefficients ranging between 0.9978 and 0.9986. The detection limits of E, DA, and NE were 2.5, 5.0, and 5.0 μg/L, respectively. The recoveries of E, DA, and NE in spiked urine samples were between 86 and 103%, with RSDs of 4.5~6.8% (n = 5). The proposed NAMCE with LIF detection combined with a pump‐free negative pressure sampling device is a simple, inexpensive, energy efficient, miniaturized system that can be successfully applied for the determination of catecholamines in urine samples.  相似文献   
63.
Vanadium pentoxide (V2O5) exhibits high theoretical capacities when used as a cathode in lithium ion batteries (LIBs), but its application is limited by its structural instability as well as its low lithium and electronic conductivities. A porous composite of V2O5-SnO2/carbon nanotubes (CNTs) was prepared by a hydrothermal method and followed by thermal treatment. The small particles of V2O5, their porous structure and the coexistence of SnO2 and CNTs can all facilitate the diffusion rates of the electrons and lithium ions. Electrochemical impedance spectra indicated higher ionic and electric conductivities, as compared to commercial V2O5. The V2O5-SnO2/CNTs composite gave a reversible discharge capacity of 198 mAh·g?1 at the voltage range of 2.05–4.0 V, measured at a current rate of 200 mA·g?1, while that of the commercial V2O5 was only 88 mAh·g?1, demonstrating that the porous V2O5-SnO2/CNTs composite is a promising candidate for high-performance lithium secondary batteries.  相似文献   
64.
N‐aroyl‐N′‐arylsulfonylhydrazines can be obtained by oxidation of aromatic aldehyde N‐arylsulfonylhydrazones with bis(trifluoroacetoxy)iodobenzene in acetone at room temperature in mild to good yields.  相似文献   
65.
A series of mixed oxides Ce1 ? x Fe x O2 was prepared by a hydrothermal method. XRD and Raman spectra were measured to study the structure of the prepared materials. The temperature-programmed reduction was undertaken to estimate reducibility of the oxides. Syngas generation from methane using these materials as oxygen carriers/catalysts via a chemical-looping procedure was investigated in detail. This procedure includes catalytic oxidation and decomposition of methane to produce H2-rich gas at the first step followed by the production of the CO-rich gas by oxidizing the carbon deposited on deactivated catalysts. The results showed that all iron ions were incorporated into the ceria lattice with the formation of oxygen vacancies in the Ce0.9Fe0.1O2 sample, while isolated Fe2O3 particles were distributed on the surface of the Ce0.8Fe0.2O2 sample. TPR measurements and the analysis of the two-step chemical-looping reactions indicated a strong interaction between the Ce and Fe species which accounts for an increased activity of the mixed oxides in the syngas generation compared to that of individual oxides. Among the several samples, the Ce0.8Fe0.2O2 catalyst showed the highest activity for methane partial oxidation due to the synergetic effects caused by the interaction of surface iron entities and Ce-Fe solid solution. In addition, selective oxidation of carbon by oxygen to CO can also be found over this material since gaseous products are formed at the carbon oxidation step with the selectivity to CO reaching 91.2%. Evidence is presented that syngas can be feasibly produced from methane with high selectivity via the chemical-looping procedure over the CeO2-Fe2O3 mixed oxides.  相似文献   
66.
The effect of replacing the conventional uniform macroion surface charge density with discrete macroion charge distributions on the structure of electric double layer (EDL) of a spherical macroion has been investigated by Monte Carlo (MC) simulations. Two discrete models have been investigated in addition to the central macroion charge: point charges localized on the macroion surface and finite-sized charges protruding into the solution. Both models have been studied with fixed and mobile macroion charges. The radial functions of local densities and electrostatic potential in EDL, are calculated and compared to the results obtained for the central macroion charge distribution. It is concluded that the model of charge distribution significantly affects the EDL structure close to the macroion, while the effect is much weaker at larger distances. With point charges localized on the macroion surface, counterions become stronger accumulated to the macroion, as a result the absolute values of surface potential ?0 and zeta ξ potential are decreased. With protruding charges, the excluded volume effect dominates over the increased correlation ability; hence the counterions are less accumulated near the macroions and the absolute values of ?0 and ξ potentials are increased.  相似文献   
67.
68.
A multifunctional system for intracellular drug delivery and simultaneous fluorescent imaging was constructed by using histidine‐tagged, cyan fluorescent protein (CFP)‐capped magnetic mesoporous silica nanoparticles (MMSNs). This protein‐capped multifunctional nanostructure is highly biocompatible and does not affect cell viability or proliferation. The CFP acts not only as a capping agent, but also as a fluorescent imaging agent. The nanoassembly was activated by histidine‐based replacement, leading to release of drug molecules encapsulated in the nanopores into the bulk solution. The fluorescent imaging functionality would allow noninvasive tracking of the nanoparticles in the body. By combining the drug delivery with cell‐imaging capability, these nanoparticles may provide valuable multifunctional nanoplatforms for biomedical applications.  相似文献   
69.
70.
Hydrophobicity has been an obstacle that hinders the use of many anticancer drugs. A critical challenge for cancer therapy concerns the limited availability of effective biocompatible delivery systems for most hydrophobic therapeutic anticancer drugs. In this study, we have developed a targeted near‐infrared (NIR)‐regulated hydrophobic drug‐delivery platform based on gold nanorods incorporated within a mesoporous silica framework (AuMPs). Upon application of NIR light, the photothermal effect of the gold nanorods leads to a rapid rise in the local temperature, thus resulting in the release of the entrapped drug molecules. By integrating chemotherapy and photothermotherapy into one system, we have studied the therapeutic effects of camptothecin‐loaded AuMP‐polyethylene glycol‐folic acid nanocarrier. Results revealed a synergistic effect in vitro and in vivo, which would make it possible to enhance the therapeutic effect of hydrophobic drugs and decrease drug side effects. Studies have shown the feasibility of using this nanocarrier as a targeted and noninvasive remote‐controlled hydrophobic drug‐delivery system with high spatial/temperal resolution. Owing to these advantages, we envision that this NIR‐controlled, targeted drug‐delivery method would promote the development of high‐performance hydrophobic anticancer drug‐delivery system in future clinical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号