首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94864篇
  免费   3512篇
  国内免费   2819篇
化学   36430篇
晶体学   978篇
力学   7905篇
综合类   159篇
数学   33623篇
物理学   22100篇
  2024年   62篇
  2023年   379篇
  2022年   643篇
  2021年   673篇
  2020年   754篇
  2019年   667篇
  2018年   10890篇
  2017年   10671篇
  2016年   6790篇
  2015年   1643篇
  2014年   1296篇
  2013年   1530篇
  2012年   5350篇
  2011年   12029篇
  2010年   6661篇
  2009年   7010篇
  2008年   7703篇
  2007年   9715篇
  2006年   1256篇
  2005年   2148篇
  2004年   2184篇
  2003年   2514篇
  2002年   1560篇
  2001年   709篇
  2000年   675篇
  1999年   600篇
  1998年   504篇
  1997年   437篇
  1996年   532篇
  1995年   400篇
  1994年   345篇
  1993年   293篇
  1992年   242篇
  1991年   218篇
  1990年   182篇
  1989年   169篇
  1988年   165篇
  1987年   123篇
  1986年   117篇
  1985年   89篇
  1984年   73篇
  1983年   62篇
  1982年   54篇
  1981年   56篇
  1980年   53篇
  1979年   46篇
  1914年   45篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
A new flavonoid, saffloflavanside (1), a new sesquiterpene, safflomegastigside (2), and a new amide, saffloamide (3), together with twenty-two known compounds (4–25), were isolated from the flowers of Carthamus tinctorius L. Their structures were determined based on interpretation of their spectroscopic data and comparison with those reported in the literature. The protective effects against lipopolysaccharide (LPS)-stimulated damage on human normal lung epithelial (BEAS-2B) cells of the compounds were evaluated using MTT assay and cellular immunofluorescence assay. The results showed that compounds 2–3, 8–11, and 15–19 exhibited protective effects against LPS-induced damage to BEAS-2B cells. Moreover, compounds 2–3, 8–11, and 15–19 can significantly downregulate the level of nuclear translocation of NF-κB p-p65. In summary, this study revealed chemical constituents with lung protective activity from C. tinctorius, which may be developed as a drug for the treatment of lung injury.  相似文献   
102.
Ferulasinkins A–D (1–4), four new norlignans, were isolated from the resins of Ferula sinkiangensis, a medicinal plant of the Apiaceae family. All of them were obtained as racemic mixtures, chiral HPLC was used to produce their (+)- and (−)-antipodes. The structures of these new compounds, including their absolute configurations, were elucidated by spectroscopic and computational methods. This isolation provides new insight into the chemical profiling of F. sinkiangensis resins beyond the well-investigated structure types such as sesquiterpene coumarins and disulfides. Compounds 2a and 3a were found to significantly inhibit the invasion and migration of triple-negative breast cancer (TNBC) cell lines via CCK-8 assay. On the other hand, the wound-healing assay also demonstrated that compounds 4a and 4b could promote the proliferation of human umbilical vein endothelial cells (HUVECs). Notably, the promoting effects of 4a and 4b were observed as more significant versus a positive control using basic fibroblast growth factor (bFGF).  相似文献   
103.
Amyloid formation and microbial infection are the two common pathological causes of neurogenerative diseases, including Alzheimer''s disease (AD), type II diabetes (T2D), and medullary thyroid carcinoma (MTC). While significant efforts have been made to develop different prevention strategies and preclinical hits for these diseases, conventional design strategies of amyloid inhibitors are mostly limited to either a single prevention mechanism (amyloid cascade vs. microbial infection) or a single amyloid protein (Aβ, hIAPP, or hCT), which has prevented the launch of any successful drug on the market. Here, we propose and demonstrate a new “anti-amyloid and anti-bacteria” strategy to repurpose two intestinal defensins, human α-defensin 6 (HD-6) and human β-defensin 1 (HBD-1), as multiple-target, dual-function, amyloid inhibitors. Both HD-6 and HBD-1 can cross-seed with three amyloid peptides, Aβ (associated with AD), hIAPP (associated with T2D), and hCT (associated with MTC), to prevent their aggregation towards amyloid fibrils from monomers and oligomers, rescue SH-SY5Y and RIN-m5F cells from amyloid-induced cytotoxicity, and retain their original antimicrobial activity against four common bacterial strains at sub-stoichiometric concentrations. Such sequence-independent anti-amyloid and anti-bacterial functions of intestinal defensins mainly stem from their cross-interactions with amyloid proteins through amyloid-like mimicry of β-sheet associations. In a broader view, this work provides a new out-of-the-box thinking to search and repurpose a huge source of antimicrobial peptides as amyloid inhibitors, allowing the blocking of the two interlinked pathological pathways and bidirectional communication between the central nervous system and intestines via the gut–brain axis associated with neurodegenerative diseases.

Amyloid formation and microbial infection are the two common pathological causes of neurogenerative diseases. Here, we proposed a new “anti-amyloid and anti-bacteria” strategy to repurpose two intestinal defensins as multiple-target, dual-function amyloid inhibitors.  相似文献   
104.
A CA19-9 electrochemical immunosensor was constructed using a hybrid self-assembled membrane modified with a gold electrode and applied to detect real samples. Hybrid self-assembled membranes were selected for electrode modification and used to detect antigens. First, the pretreated working electrodes were placed in a 3-mercaptopropionic acid (MPA)/β-mercaptoethanol (ME) mixture for 24 h for self-assembly. The electrodes were then placed in an EDC/NHS mixture for 1 h. Layer modification was performed by stepwise dropwise addition of CA19-9 antibody, BSA, and antigen. Differential pulse voltammetry was used to characterize this immunosensor preparation process. The assembled electrochemical immunosensor enables linear detection in the concentration range of 0.05–500 U/mL of CA19-9, and the detection limit was calculated as 0.01 U/mL. The results of the specificity measurement test showed that the signal change of the interfering substance was much lower than the response value of the detected antigen, indicating that the sensor has good specificity and strong anti-interference ability. The repeatability test results showed that the relative standard deviations were less than 5%, showing good accuracy and precision. The CA19-9 electrochemical immunosensor was used for the actual sample detection, and the experimental results of the standard serum addition method showed that the RSD values of the test concentrations were all less than 10%. The recoveries were 102.4–115.0%, indicating that the assay has high precision, good accuracy, and high potential application value.  相似文献   
105.
Hydrosilylation is one of the most important reactions in synthetic chemistry and ranks as a fundamental method to access organosilicon compounds in industrial and academic processes. However, the enantioselective construction of chiral-at-silicon compounds via catalytic asymmetric hydrosilylation remained limited and difficult. Here we report a highly enantioselective hydrosilylation of ynones, a type of carbonyl-activated alkynes, using a palladium catalyst with a chiral binaphthyl phosphoramidite ligand. The stereospecific hydrosilylation of ynones affords a series of silicon-stereogenic silylenones with up to 94% yield, 20:1 regioselectivity and 98:2 enantioselectivity. The density functional theory(DFT) calculations were conducted to elucidate the reaction mechanism and origin of high degree of stereoselectivity, in which the powerful potential of aromatic interaction in this reaction is highlighted by the multiple C–H-π interaction and aromatic cavity-oriented enantioselectivitydetermining step during desymmetric functionalization of Si–H bond.  相似文献   
106.
107.
ZnO microstructures have been grown from zinc chloride (ZnCl2) and ammonia solution at 100 °C for 1 – 24 hours. X‐ray diffraction, scanning electron microscope and field‐emission scanning microscope were utilized to investigate the structural properties and morphology of the ZnO crystals. Structural investigations show that phase‐pure hexagonal structure ZnO has been successfully synthesized, and the hexagonal structure ZnO can be achieved in solutions with an appropriate range of concentrations. Under our experimental conditions, several different morphologies of ZnO structures were obtained, including flower‐like and bar flower‐like. The relationship between the morphology and experimental conditions are discussed.  相似文献   
108.
Nano-hydroxyapatite (HA)/poly(l-lactide) (PLLA) composite microspheres with relatively uniform size distribution were prepared by a solid-in-oil-in-water (s/o/w) emusion solvent evaporation method. The encapsulation of the HA nanopaticles in microshperes was significantly improved by grafting PLLA on the surface of the HA nanoparticles (p-HA) during emulsion process. This procedure gave a possibility to obtain p-HA/PLLA composite microspheres with uniform morphology and the encapsulated p-HA nanoparticle loading reached up to 40 wt% (33 wt% of pure HA) in the p-HA/PLLA composite microspheres. The microstructure of composite microspheres from core-shell to single phase changed with the variation of p-HA to PLLA ratios. p-HA/PLLA composite microspheres with the diameter range of 2–3 μm were obtained. The entrapment efficiency of p-HA in microspheres could high up to 90 wt% and that of HA was only 13 wt%. Surface and bulk characterizations of the composite microspheres were performed by measurements such as wide angle X-ray diffraction (WAXD), thermal gravimetric analysis (TGA), environmental scanning electron microscope (ESEM) and transmission electron microscopy (TEM).  相似文献   
109.
Main observation and conclusion Bioorthogonal click chemistry has emerged as a powerful tool for the specific modification of proteins in complex mixtures.Metab...  相似文献   
110.
Vitamin C nanoliposomes were prepared by combining a conventional method (film evaporation) with dynamic high pressure microfluidization. Their physicochemical characterizations (antioxidant activity, particle size, entrapment efficiency, morphology, in vitro drug release, and storage stability) and skin permeation behavior were investigated. The results showed that vitamin C nanoliposomes, having equivalent DPPH (2, 2-diphenyl-1-picrylhydrazyl) free radical scavenging capacity of pure vitamin C solution without loss of their biological activity, exhibited better storage stability at 37°C for 24 hours and at 4°C for 60 days, a more excellent sustained drug release as well as higher skin penetration rate than vitamin C liposomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号