By taking advantage of UV‐Raman spectroscopy and high‐resolution TEM (HRTEM), combined with the focused ion beam (FIB) technique, the transformation from GaOOH into α‐Ga2O3 and then into β‐Ga2O3 was followed. We found that the stepwise transformations took place from the surface region before developing into the bulk of single particles without particle agglomeration and growth. During the transformation from GaOOH into α‐Ga2O3, the elimination of water vapor through the dehydroxylation of GaOOH resulted in the formation of micropores in the single particles, whilst maintaining their particle size. For the phase transformation from α‐Ga2O3 into β‐Ga2O3, the nucleation of β‐Ga2O3 was found to occur at the surface defects and this process could be retarded by occupying these defects with a small amount of La2O3. By finely controlling the process of the phase transformation, the β‐Ga2O3 domains gradually developed from the surface into the bulk of the single particles without particle agglomeration. Therefore, the surface structure of the α‐Ga2O3 single particles can be easily tuned and a particle with an α@β core–shell phase structure has been obtained. 相似文献
Controlled growth of single-crystal high-quality ‘track-and-field ground’ shaped graphene domains and the morphological evolution from hexagonal to hexagram graphene domain even square and circular graphene domain has been achieved by low-pressure CVD on solid copper substrate, thereby demonstrating that the shape of the graphene grains can potentially be precisely tuned by optimizing growth parameters. The etching reaction of graphene has also been studied, and results show that a low flow rate of hydrogen (99.999%) is favorable to form hexagonal structure for the etching reaction of graphene due to the exist of oxygen or oxidizing impurities in hydrogen gas commonly used. Controlled growth and etching reaction of graphene determine the final shape of graphene domains and all these efforts contribute to the study of size and morphology and the growth mechanism of graphene domains. 相似文献
Lanthanide‐catalyzed addition of diethyl phosphite with chalcones was achieved under mild conditions. The reaction exhibited good product selectivity using different catalysts. γ‐Oxophosphonates were obtained in high yields in the reactions catalyzed by Yb(OAr)3(THF)2, while those catalyzed by [(Me3Si)2N]3La(μ‐Cl)Li(THF)3 afforded 1,2‐oxaphospholane‐5‐phosphonates as the main products in moderate to good yields. This methodology provides facile and practical approaches to the corresponding organophosphorus compounds with biological interest. 相似文献
Nineteen impurities in roxithromycin drug substance made in China were separated and identified by HPLC–MSn (TOF and TRAP) for the further improvement of official monographs in Pharmacopoeias. The fragmentation patterns and structural assignment of these impurities were studied. The column was Shim VP-ODS (250 × 4.6 mm, 5 μm). The mobile phase was 10 m mol L−1 ammonium acetate and 0.1 % formic acid aqueous solution-acetonitrile (62.5:37.5). In positive mode, full scan LC–MS was first performed to obtain the m/z value of the protonated molecules and formulas of all detected peaks on Agilent 6538Q TOF high resolution mass spectrometer. LC–MS-MS and LC–MS-MS–MS were then carried out on the compounds of interest on AB SCIEX 4000 Q TRAP™ composite triple quadrupole/linear ion trap tandem mass spectrometer. The complete fragmentation patterns of nineteen impurities were studied and used to obtain information about the structures of these impurities. The structures of nineteen impurities in roxithromycin drug substance were deduced based on the HPLC–MSn data, in which nine impurities were novel impurities.
Mo and C co-doped TiO2 photocatalysts were successfully prepared by a calcination–hydrothermal method. The catalysts were characterized by XRD, XPS, DRS, FTIR, and Raman spectroscopy. Results from photocatalysis showed that 1%Mo–C4/TiO2 had excellent visible light photocatalytic activity. This may be ascribed not only to the Mo and C doping but also to synergism between the Mo and C. 相似文献