首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5377篇
  免费   848篇
  国内免费   1076篇
化学   4380篇
晶体学   64篇
力学   286篇
综合类   72篇
数学   731篇
物理学   1768篇
  2024年   9篇
  2023年   80篇
  2022年   114篇
  2021年   135篇
  2020年   199篇
  2019年   181篇
  2018年   136篇
  2017年   173篇
  2016年   239篇
  2015年   263篇
  2014年   313篇
  2013年   414篇
  2012年   461篇
  2011年   452篇
  2010年   401篇
  2009年   420篇
  2008年   411篇
  2007年   388篇
  2006年   354篇
  2005年   327篇
  2004年   287篇
  2003年   309篇
  2002年   265篇
  2001年   197篇
  2000年   166篇
  1999年   113篇
  1998年   73篇
  1997年   60篇
  1996年   84篇
  1995年   38篇
  1994年   44篇
  1993年   41篇
  1992年   34篇
  1991年   34篇
  1990年   24篇
  1989年   9篇
  1988年   8篇
  1987年   13篇
  1986年   13篇
  1985年   2篇
  1984年   1篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1977年   1篇
  1973年   1篇
  1968年   1篇
  1959年   1篇
排序方式: 共有7301条查询结果,搜索用时 328 毫秒
901.
Mycophenolic acid (MPA), a frequently used immunosuppressant, exhibits large inter‐patient pharmacokinetic variability. This study (a) developed and validated a sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) assay for MPA and metabolites [MPA glucuronide (MPAG) and acyl‐glucuronide (AcMPAG)] in the culture medium of HepaRG cells; and (b) characterized the metabolism interaction between MPA and p‐cresol (a common uremic toxin) in this in vitro model as a potential mechanism of pharmacokinetic variability. Chromatographic separation was achieved with a C18 column (4.6 × 250 mm,5 μm) using a gradient elution with water and methanol (with 0.1% formic acid and 2 mm ammonium acetate). A dual ion source ionization mode with positive multiple reaction monitoring was utilized. Multiple reaction monitoring mass transitions (m/z) were: MPA (320.95 → 207.05), MPAG (514.10 → 303.20) and AcMPAG (514.10 → 207.05). MPA‐d3 (323.95 → 210.15) and MPAG‐d3 (517.00 → 306.10) were utilized as internal standards. The calibration curves were linear from 0.00467 to 3.2 μg/mL for MPA/MPAG and from 0.00467 to 0.1 μg/mL for AcMPAG. The assay was validated based on industry standards. p‐Cresol inhibited MPA glucuronidation (IC50 ≈ 55 μm ) and increased MPA concentration (up to >2‐fold) at physiologically relevant substrate‐inhibitor concentrations (n = 3). Our findings suggested that fluctuations in p‐cresol concentrations might be in part responsible for the large pharmacokinetic variability observed for MPA in the clinic.  相似文献   
902.
Although many ionic metal–organic frameworks (MOFs) have been reported, little is known about how the charge of the skeleton affects the properties of the MOF materials. Herein we report how the chemical stability of MOFs can be substantially improved through embedding electrostatic interactions in structure. A MOF with a cationic skeleton is impervious to extremely acidic, oxidative, reductive, and high ionic strength conditions, such as 12 m HCl (301 days), aqua regia (86 days), H2O2 (30 days), and seawater (30 days), which is unprecedented for MOFs. DFT calculations suggested that steric hinderance and the repulsive interaction of the cationic framework toward positively charged species in microenvironments protects the vulnerable bonds in the structure. Diverse functionalities can be bestowed by substituting the counterions of the charged framework with identically charged functional species, which broadens the horizon in the design of MOFs adaptable to a demanding environment with specific functionalities.  相似文献   
903.
904.
The deoxyfluorination of alcohols is a fundamentally important approach to access alkyl fluorides, and thus the development of shelf-stable, easy-to-handle, fluorine-economical, and highly selective deoxyfluorination reagents is highly desired. This work describes the development of a crystalline compound, N-tosyl-4-chlorobenzenesulfonimidoyl fluoride (SulfoxFluor), as a novel deoxyfluorination reagent that possesses all of the aforementioned merits, which is rare in the arena of deoxyfluorination. Endowed by the multi-dimensional modulating ability of the sulfonimidoyl group, SulfoxFluor is superior to 2-pyridinesulfonyl fluoride (PyFluor) in fluorination rate, and is also superior to perfluorobutanesulfonyl fluoride (PBSF) in fluorine-economy. Its reaction with alcohols not only tolerates a wide range of functionalities including the more sterically hindered alcoholic hydroxyl groups, but also exhibits high fluorination/elimination selectivity. Because SulfoxFluor can be easily prepared from inexpensive materials and can be safely handled without special techniques, it promises to serve as a practical deoxyfluorination reagent for the synthesis of various alkyl fluorides.  相似文献   
905.
906.
Self-shaping materials such as shape memory polymers have recently drawn considerable attention owing to their high shape-changing ability in response to changes in ambient conditions, and thereby have promising applications in the biomedical, biosensing, soft robotics and aerospace fields. Their design is a crucial issue of both theoretical and technological interest. Motivated by the shape-changing ability of Towel Gourd tendril helices during swelling/deswelling, we present a strategy for realizing self-shaping function through the deformation of micro/nanohelices. To guide the design and fabrication of selfshaping materials, the shape equations of bent configurations, twisted belts, and helices of slender chiral composite are developed using the variation method. Furthermore, it is numerically shown that the shape changes of a chiral composite can be tuned by the deformation of micro/nanohelices and the fabricated fiber directions. This work paves a new way to create self-shaping composites.  相似文献   
907.
Rong  Nannan  Wang  Zhanshan 《Nonlinear dynamics》2019,98(1):15-26
Nonlinear Dynamics - This paper investigates the finite-time stabilization for a class of nonlinear systems by proposing a new event-triggered controller. The novelty lies in that, by introducing...  相似文献   
908.
<正>The metal halide perovskite materials demonstrate outstanding performance in photovoltaics because of their excellent optoelectronic properties [1-7]. The perovskite solar cells (PSCs) exhibiting outstanding efficiency [8,9], high power-per-weight [10], and excellent radiation resistance[11-13] are considered to be promising for developing the new-generation energy technology for space application.However, the extreme space environment would impose  相似文献   
909.
Elucidation of relationship among chemical structure, cellular uptake, localization, and biological activity of anticancer metal complexes is important for the understanding of their mechanisms of action. Organometallic rhenium(I) tricarbonyl compounds have emerged as potential multifunctional anticancer drug candidates that can integrate therapeutic and imaging capabilities in a single molecule. Herein, two mononuclear phosphorescent rhenium(I) complexes ( Re1 and Re2 ), along with their corresponding dinuclear complexes ( Re3 and Re4 ), were designed and synthesized as potent anticancer agents. The subcellular accumulation of Re1–Re4 was conveniently analyzed by confocal microscopy in situ in live cells by utilizing their intrinsic phosphorescence. We found that increased lipophilicity of the bidentate ligands could enhance their cellular uptake, leading to improved anticancer efficacy. The dinuclear complexes were more potent than the mononuclear counterparts. The molecular anticancer mechanisms of action evoked by Re3 and Re4 were explored in detail. Re3 with a lower lipophilicity localizes to lysosomes and induces caspase‐independent apoptosis, whereas Re4 with higher lipophilicity specially accumulates in mitochondria and induces caspase‐independent paraptosis in cancer cells. Our study demonstrates that subcellular localization is crucial for the anticancer mechanisms of these phosphorescent rhenium(I) complexes.  相似文献   
910.
Network coding is an emerging telecommunication technique, where any intermediate node is allowed to recombine incoming data if necessary. This technique helps to increase the throughput, however, very likely at the cost of huge amount of computational overhead, due to the packet recombination performed (ie coding operations). Hence, it is of practical importance to reduce coding operations while retaining the benefits that network coding brings to us. In this paper, we propose a novel evolutionary algorithm (EA) to minimize the amount of coding operations involved. Different from the state-of-the-art EAs which all use binary encodings for the problem, our EA is based on path-oriented encoding. In this new encoding scheme, each chromosome is represented by a union of paths originating from the source and terminating at one of the receivers. Employing path-oriented encoding leads to a search space where all solutions are feasible, which fundamentally facilitates more efficient search of EAs. Based on the new encoding, we develop three basic operators, that is, initialization, crossover and mutation. In addition, we design a local search operator to improve the solution quality and hence the performance of our EA. The simulation results demonstrate that our EA significantly outperforms the state-of-the-art algorithms in terms of global exploration and computational time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号