首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1775篇
  免费   304篇
  国内免费   180篇
化学   1233篇
晶体学   19篇
力学   95篇
综合类   11篇
数学   158篇
物理学   743篇
  2024年   6篇
  2023年   48篇
  2022年   61篇
  2021年   63篇
  2020年   97篇
  2019年   80篇
  2018年   57篇
  2017年   53篇
  2016年   78篇
  2015年   85篇
  2014年   76篇
  2013年   107篇
  2012年   122篇
  2011年   151篇
  2010年   114篇
  2009年   118篇
  2008年   128篇
  2007年   110篇
  2006年   112篇
  2005年   97篇
  2004年   60篇
  2003年   47篇
  2002年   42篇
  2001年   51篇
  2000年   37篇
  1999年   44篇
  1998年   29篇
  1997年   26篇
  1996年   34篇
  1995年   26篇
  1994年   30篇
  1993年   16篇
  1992年   13篇
  1991年   9篇
  1990年   7篇
  1989年   9篇
  1988年   8篇
  1987年   3篇
  1986年   1篇
  1984年   3篇
  1982年   1篇
排序方式: 共有2259条查询结果,搜索用时 78 毫秒
71.
72.
从推导驻波方程的一般形式出发,讨论了入射波和反射波的初相在驻波形成中的作用和关系.  相似文献   
73.
The dynamic chemistry of disulfide bonds has emerged as one of the most powerful tools used for the fabrication of organic compounds and self‐healing materials. In this article, a novel aromatic amine‐terminated polysulfide oligomer is first synthesized from thiol‐terminated polysulfide oligomer and bis(4‐aminophenyl) disulfide via disulfide metathesis mechanism. The resulting oligomer is confirmed by FTIR and 1H NMR spectra and then successfully applied in constructing self‐healable polyurea material (A‐LP23‐I), which combines the advantages of higher strength of polyureas and excellent self‐healing ability of polysulfide‐based materials. After subjecting to a temperature of 75 °C for 48 h, both the tensile strength and ultimate elongation of A‐LP23‐I restore to more than 90% of the original values (3.32 MPa and 396%). This study demonstrates a novel strategy for synthesizing aromatic amine‐terminated oligomer. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1460–1466  相似文献   
74.
In this paper, an improved interframe registration based nonuniformity correction algorithm for focal plane arrays is proposed. The method simultaneously estimates detector parameters and carries out the nonuniformity correction by minimizing the mean square error between the two properly registered image frames. A new masked phase correlation algorithm is introduced to obtain reliable shift estimates in the presence of fixed pattern noise. The use of an outliers exclusion scheme, together with a variable step size strategy, could not only promote the correction precision considerably, but also eliminate ghosting artifacts effectively. The performance of the proposed algorithm is evaluated with clean infrared image sequences with simulated nonuniformity and real pattern noise. We also apply the method to a real-time imaging system to show how effective it is in reducing noise and the ghosting artifacts.  相似文献   
75.
In this study, the enantioseparation of zopiclone, repaglinide, chlorphenamine maleate, brompheniramine maleate, dioxopromethazine hydrochloride, promethazine hydrochloride, liarozole, carvedilol, homatropine hydrobromide, homatropine methylbromide, venlafaxine, and sibutramine hydrochloride has been investigated using β‐CD in combination with a chiral ionic liquid (IL), 1‐ethyl‐3‐methylimidazolium‐L‐lactate. The influence of the type of IL and its concentration, BGE pH, and chain length of the IL cations on the resolution are discussed. Finally, the proposed method was successfully applied for the chiral impurity determination of eszopiclone in pharmaceutical tablets after validation with respect to accuracy and precision, linearity range, selectivity, repeatability, LOD and LOQ. It is assessed that the chiral impurity determination in the commercial tables is fewer than 0.1%.  相似文献   
76.
In this paper, we present an offline arbitrated quantum blind dual-signature protocol by using four-particle entangled Greenberger-Horne-Zeilinger(GHZ) states. By using the special relationship of four-particle GHZ states, we can not only support the security of quantum signature, but also guarantee the anonymity of the message owner. In our protocol, the authority of the arbitrator has been reduced, i.e., he will not help the receiver verify the signature in the verification. Compared with the previous quantum blind signature protocols, the presented arbitrator is offline. Finally, the security analysis and discussion are proposed.  相似文献   
77.
This paper is concerned with the exponential stability analysis for a class of cellular neural networks with both interval time-varying delays and general activation functions. The boundedness assumption of the activation function is not required. The limitation on the derivative of time delay being less than one is relaxed and the lower bound of time-varying delay is not restricted to be zero. A new Lyapunov-Krasovskii functional involving more information on the state variables is established to derive a novel exponential stability criterion. The obtained condition shows potential advantages over the existing ones since no useful item is ignored throughout the estimate of upper bound of the derivative of Lyapunov functional. Finally, three numerical examples are included to illustrate the proposed design procedures and applications.  相似文献   
78.
A hybrid particle–continuum method is used to study the shear flow confined between two opposing walls, one of which is coated with polymer chains. Molecular dynamics (MD) is used in the particle region near the brush and Navier–Stokes (NS) equations are applied in the remaining region where the continuum assumption holds. The information exchange from the continuum region to the particle region is implemented using the constrained particle dynamics. Both Couette shear flow and oscillatory flow are considered in the present work. The effect of the shear flow on the conformational characteristics of polymer brushes is analyzed. In the overlap region, the velocities obtained from MD simulations are smoothly connected with those from NS equations. Our investigations demonstrate that the hybrid particle–continuum model is valid in exploring the shear behavior of polymer brushes.  相似文献   
79.
Click chemistry focuses on the development of highly selective reactions using simple precursors for the exquisite synthesis of molecules. Undisputedly, the CuI-catalyzed azide–alkyne cycloaddition (CuAAC) is one of the most valuable examples of click chemistry, but it suffers from some limitations as it requires additional reducing agents and ligands as well as cytotoxic copper. Here, we demonstrate a novel strategy for the azide–alkyne cycloaddition reaction that involves a photoredox electron-transfer radical mechanism instead of the traditional metal-catalyzed coordination process. This newly developed photocatalyzed azide–alkyne cycloaddition reaction can be performed under mild conditions at room temperature in the presence of air and visible light and shows good functional group tolerance, excellent atom economy, high yields of up to 99 %, and absolute regioselectivity, affording a variety of 1,4-disubstituted 1,2,3-triazole derivatives, including bioactive molecules and pharmaceuticals. The use of a recyclable photocatalyst, solar energy, and water as solvent makes this photocatalytic system sustainable and environmentally friendly. Moreover, the azide–alkyne cycloaddition reaction could be photocatalyzed in the presence of a metal-free catalyst with excellent regioselectivity, which represents an important development for click chemistry and should find versatile applications in organic synthesis, chemical biology, and materials science.  相似文献   
80.
A two‐dimensional (2D) carbon nanofilm with uniform artificial nanopores is an ideal material to ultimately suppress the fuel permeation in the proton exchange membrane fuel cells. Graphdiyne has great mechanical strength, high dimensional stability, and controllable nanopores, and has good prospects to play this crucial role. It is found that graphdiyne nanofilm with amino groups and natural nanopores can be easily prepared with high integrity. The aminated graphdiyne has good compatibility with the Nafion matrix owing to the acid–base interaction between them. The excellent comprehensive properties of graphdiyne in selectivity, dimensional stability, and integrity effectively improve the power performance and stability of fuel cells at wide temperature. Our results can be developed into a universal method that can easily realize the selective separation of ions and small molecules, and open a new way for the emerging applications in green energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号