首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31005篇
  免费   5576篇
  国内免费   3262篇
化学   21940篇
晶体学   349篇
力学   1801篇
综合类   136篇
数学   2983篇
物理学   12634篇
  2024年   135篇
  2023年   693篇
  2022年   1204篇
  2021年   1339篇
  2020年   1392篇
  2019年   1373篇
  2018年   1167篇
  2017年   1048篇
  2016年   1593篇
  2015年   1514篇
  2014年   1947篇
  2013年   2390篇
  2012年   2857篇
  2011年   2868篇
  2010年   1870篇
  2009年   1781篇
  2008年   1992篇
  2007年   1736篇
  2006年   1624篇
  2005年   1279篇
  2004年   975篇
  2003年   763篇
  2002年   755篇
  2001年   587篇
  2000年   467篇
  1999年   592篇
  1998年   511篇
  1997年   498篇
  1996年   491篇
  1995年   426篇
  1994年   342篇
  1993年   281篇
  1992年   279篇
  1991年   224篇
  1990年   202篇
  1989年   151篇
  1988年   92篇
  1987年   79篇
  1986年   104篇
  1985年   73篇
  1984年   37篇
  1983年   44篇
  1982年   28篇
  1981年   22篇
  1980年   7篇
  1979年   4篇
  1976年   1篇
  1975年   1篇
  1957年   4篇
  1923年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
淫羊藿根与叶活性成分的分析和比较   总被引:8,自引:0,他引:8  
采用细胞膜色谱法(CMC)筛选,并结合离体药理实验确定主要活性成分,利用高效液相色谱法分析比较了淫羊藿根与叶中的活性成分及其差异性.色谱条件为Kromasil ODS 柱(150 mm× 4.6 mm.I.D )流动相甲醇-水(70:30,V:V);检测波长270nm。筛选发现淫羊藿根中的两个有效成分YYH-214和YYH-216对血管有较强的舒张作用,表明活性成分在CMC模型体系中的保留特性与药理作用之间存在良好的相关性。在此色谱条件下淫羊藿叶未检测到这两种活性成分.  相似文献   
172.
A series of novel two-dimensional (2D) and three-dimensional (3D) praseodymium coordination polymers, namely, {[Pr3(PDA)4(HPDA)(H2O)8] x 8H2O}n (2), {[Pr2(PDA)3(H2O)3] x H2O}n (3), {[Pr(PDA)(H2O)4] x ClO4}n (4), and { [Pr2(PDA)2(H2O)5SO4] x 2H2O}n (5) (PDA = pyridine-2,6-dicarboxylic anion), was designed and synthesized under hydrothermal conditions. Complexes 1-3 (chainlike polymer, {[Pr(PDA)(HPDA)(H2O)2] x 4H2O}n (1) was also obtained independently by us, although it has been reported recently by Ghosh et al.) were fabricated successfully by simply tuning the Pr/PDA ratio and exhibited various and intriguing topological structures from a 1D chain to a 3D network. While the synthetic strategy of 5 was triggered and further performed only after 1 was structurally characterized. The complexes were characterized by X-ray single-crystal determination, spectroscopic, and variable-temperature magnetic susceptibility analyses. In complex 2 an unusual nanosized square motif as a building block constructed by eight Pr ions was further assembled into a highly ordered 2D grid compound. In complex 3 the decanuclear Pr metal-based structure as a repeat unit interpenetrated to form a novel 3D polymer. Complex 4 was a 3D network polymer fabricated through a hexanuclear Pr ring as a building block, and ClO4- anions as guests were trapped in the cavity. In complex 5 six Pr atoms, two SO4(2-) anions, and carboxylic oxygen bridges constructed an intriguing rectangle structure as a repeat unit in the grid to form a 2D coordination polymer in which the unique bi-bidentate coordination mode of SO4(2-) anion was observed.  相似文献   
173.
对用溶胶凝胶法制备的CdS/SiO2复合材料进行低频Raman散射研究,结果表明可从其低频Raman散射峰位计算出CdS微晶的粒径,两种不同的低频振动模式由激发光的两种偏振方向加以区分,低频Raman散射射的二级散射峰根据实验结果加以指认,所得平均粒径结果与透射电镜观察结果有较好的对应关系,复合材料吸收光谱吸收边蓝移与CdS纳米子粒径之间存在着密切的关系,实验证明,样品吸收边能量与CdS平均粒径的  相似文献   
174.
翟纬绪  赵转云 《有机化学》1986,6(2):134-138
Pt(PPh_3)_2Cl_2在碱性介质中,与一氧化碳直接进行还原及羰基化反应,得到五种膦取代的羰基铂配合物:Pt_5(μ_2-CO)_5(CO)(PPh_3)_4 1,Pt_3(μ_2-CO)_3(PPh_3)_3 2,Pt_3(μ_2-CO)_3(PPh_3)_4 3,Pt_4(μ_2-CO)_5(PPh_3)_4 4,以及Pt(Cl)(PPh_3)_2(COOCH_3) 5。经X-射线单晶衍射分析,确定了新的三核铂羰基簇2以及配合物5的分子结构。还讨论了1和5的生成机理。  相似文献   
175.
溶胶-凝胶法合成纳米铬酸锶镧的工艺研究   总被引:1,自引:3,他引:1  
以硝酸镧、硝酸铬、硝酸锶为原料,乙二醇为分散剂,柠檬酸为胶溶剂,用溶胶-凝胶法合成纳米级的铬酸锶镧粉体。利用TG,DSC,XRD分析研究了粉料的晶化过程。利用HREM分析了煅烧温度、含锶量对粉料粒径的影响。研究表明,获得纳米晶的最佳烧结温度在800℃。随着锶掺杂量的增加,粉料的粒径逐渐变小。  相似文献   
176.
Sorption behavior of 2,4-dichlorophenol on marine sediment   总被引:1,自引:0,他引:1  
The sorption behavior of 2,4-dichlorophenol on marine sediments treated by different methods was investigated systematically. The sorption of 2,4-dichlorophenol on marine sediments was completed mainly via ion exchange and surface polar sorption. Both the Freundlich and Langmuir isotherms were fit for describing its sorption behavior. The sorption behavior of 2,4-dichlorophenol was affected by various factors including aqueous salinity and temperature. The sorption amount of 2,4-dichlorophenol on marine sediments increased with increasing ion strength, but decreased with increasing temperature.  相似文献   
177.
本文用分光光度法研究了间乙酰基偶氮氯膦试剂在水溶液中的离解作用和质子化作用;镧与间乙酰基偶氮氯膦配合物的组成和β型配合物形成反应的条件和动力学特征,并测定了α型配合物的积累稳定常数  相似文献   
178.
Aimed at the increase of electrorheological effect, a novel core/shell material was prepared by the combination of mechanochemical activity and sol-gel technique. The structure analyses X-ray diffraction, Fourier transform infrared spectrometry, scanning electron microscopy, and energy-dispersive spectrometry showed that a modified kaolinite/titanium oxide nanocomposite consisted of the mechanochemically activated kaolinite/NaCl complex coated by titanium oxide. A distinct enhancement of the electrorheological activity was found by using such particles dispersed in silicone oil than those of kaolinite or titanium oxide alone under a direct current electric field. Modified kaolinite/titanium oxide electrorheological fluid has a larger dielectric constant enhancement deltaepsilon', and a strong interfacial polarization occurs with a clear dielectric loss peak around 2 kHz. Doping NaCl into the core (kaolinite) by the mechanochemical activation and limiting the transferring of the ions by the shell (titanium oxide) may increase the interfacial polarizability of particles and induce a high electrorheological effect.  相似文献   
179.
Unfractionated heparin (UFH), a naturally occurring anionic polysaccharide, is widely used as an anticoagulant agent in clinical practice. When overdosed or used in sensitive patients, UFH may cause various risks and a UFH neutralizer needs to be administered immediately to reverse heparinization. However, the most common UFH neutralizer, protamine sulfate, often causes various adverse effects, some of which are life-threatening. Herein, we designed a highly biocompatible, oligoethylene glycol functionalized guanidinocalixarene (GC4AOEG) as an antidote against UFH. GC4AOEG and UFH exhibited a strong binding affinity, ensuring specific recognition and neutralization of UFH by GC4AOEG in vitro and in vivo. As a consequence, UFH-induced excessive bleeding was significantly alleviated by GC4AOEG in different mouse bleeding models. Additionally, no adverse effects were observed during these treatments in vivo. Taken together, GC4AOEG, as a strategically designed, biocompatible artificial receptor with strong recognition affinity towards UFH, may have significant clinical potential as an alternative UFH reversal agent.

An oligoethylene glycol functionalized guanidinocalix[4]arene was developed as a safe antidote against heparin, via specific recognition and neutralization of heparin in vitro and in vivo.

Heparin sodium, often referred to as unfractionated heparin (UFH, also known as heparin), is a well-known anionic glycosaminoglycan consisting of long, helical, unbranched chains of repeating sulfonated disaccharide units (Fig. 1).1 It is currently a gold-standard life-saving drug to overcome blood coagulation by activating antithrombin-III to impede the coagulation process.2,3 Systemic heparinization is the most common anticoagulation procedure in surgical practice (e.g. open-heart surgery) and extracorporeal therapies such as kidney dialysis. At the end of surgery, excess heparin often needs to be deactivated by using a heparin neutralizer; otherwise patients have risks of low blood pressure and a slow heart rate, and may develop internal bleeding.4 Therefore, the neutralization of heparin has been a topic of significant research interest in the biomedical field.Open in a separate windowFig. 1Scheme of heparin reversal by GC4AOEG in the circulatory system.Protamine sulfate, the only FDA-approved neutralizer of UFH, possesses a highly positive charge density due to its polymeric nature and rich arginine residues. Thus, electrostatic interactions are the major driving force in the formation of a UFH–protamine complex, leading to the neutralization and deactivation of UFH.1,5 However, due to its non-specific interactions, protamine sulfate often causes various adverse effects such as bradycardia, hypotension and pulmonary hypertension, as well as allergic reactions including life-threatening anaphylactic reactions in some patients.5 When overdosed, protamine may further impair the intricate balance in the blood and cause coagulopathy.5–7 Given these issues, there has been a medical need for alternative, safe UFH neutralizers that can specifically counteract UFH without causing serious adverse effects.8Discovering and developing new heparin neutralizers has been a popular area of research.8,9 During the past two decades, a variety of different UFH neutralizers including small molecules,10 cationic polymers (e.g. polybrene),11–14 peptides,11,15 and nanoparticles16,17 have been designed and evaluated in vitro and/or in vivo. For instance, surfen, as a small-molecule antagonist of UFH, may electrostatically bind with UFH; however only modest neutralizing effects against UFH were observed in rats,10,18 likely attributed to the lack of strong, specific recognition. On the other hand, polycationic species, including polybrene19 and poly-dl-lysine,20 exhibited stronger binding with UFH and significant potential as UFH neutralization agents. However, toxicity was still a key concern of these species due to their intrinsic electrostatic interactions with red blood cells (RBC).21 Meanwhile, some UFH antagonists have achieved preliminary success in preclinical studies and even moved to clinical evaluations. For instance, ciraparantag (PER977), as a synthetic antidote against several anticoagulants, is currently being evaluated in phase II clinical trials.22 UHRA (Universal Heparin Reversal Agent), a synthetic multivalent dendrimer polymer in the form of nanoparticles with positively charged surfaces, can reverse the activity of all clinically available heparins and it is currently undergoing preclinical studies and will likely move to clinical investigations.23 However, the oligo- and poly-cationic nature of these species suggests their general tendency towards any negatively charged species, making them “universal” or function against several anticoagulants, implying their low specificity towards heparin.More recently, the sequestration and reversal of toxic agents by supramolecular host molecules have attracted increasing attention, and a typical example of clinical and commercial success is sugammadex, a carboxylated derivative of gamma-cyclodextrin that may specifically reverse the activity of non-depolarizing neuromuscular blocking agents.24 Inspired by this clinical success, several macrocycles were designed and synthesized to selectively bind UFH. For instance, Liu et al. synthesized amphiphilic multi-charged cyclodextrins (AMCD), and AMCD-assembly was utilized for selective heparin binding.16 Nitz et al. derivatized a cyclodextrin with amide and guanidino groups as a polycationic receptor to recognize and detect UFH.25 Kostiainen and co-workers studied cationic, quaternary ammonium functionalized pillar[5]arene because of its potential complexation with UFH.26 Additionally, cationic calixarene derivatives were designed for UFH binding and guanidinocalixarenes exhibited stronger binding affinity with UFH than their quaternary amine-functionalized counterparts.27,28 In spite of decent binding affinities and selective recognition of UFH, these macrocycles still possess various limitations such as non-specific toxicity induced mostly by cationic charges, which may disrupt cell membranes and induce blood coagulation.29,30An ideal UFH neutralizer should full-fill the following three requirements: (1) binding strongly towards UFH in a specific manner; (2) excellent biocompatibility and safety profile, and (3) a clearly defined molecular structure to facilitate batch-to-batch consistency. Thus far, none of the clinical UFH antagonists or previously reported candidates has fulfilled these conditions. Herein we designed an artificial receptor, an oligoethylene glycol functionalized guanidinocalixarene, GC4AOEG, by leveraging the asymmetrical structure of calixarene to strategically add guanidinium groups on one side and oligoethylene glycol (OEG) groups on the other side (Fig. 1). We anticipated that the guanidinium-enriched upper rim would bind strongly with UFH via salt bridges (charge-assisted hydrogen bonds).28,31 In addition, the biocompatible OEG-functionalized lower rim may help improve the water-solubility and biocompatibility of the host molecule.32,33GC4AOEG was synthesized in 5 steps starting from the maternal calix[4]arene (Fig. 2). Briefly, p-tert-butylcalix[4]arene 1 was alkylated with tosylate 234 to obtain compound 3 with a well-defined cone conformation, and replacement of the tert-butyl with nitro groups via an ipso-nitration reaction afforded compound 4.35 Subsequently, compound 4 was hydrogenated in the presence of SnCl2·2H2O, affording the tetramine derivative 5. Subsequently, compound 6 was obtained via a reaction between compound 5 and di-Boc-protected thiourea units. The removal of the protecting groups was achieved using SnCl4 in ethyl acetate, to yield the target GC4AOEG (the characterization of intermediates (Fig. S1 and S2) and GC4AOEG (Fig. S3) are in the ESI).Open in a separate windowFig. 2Synthetic route of GC4AOEG and fluorescence titrations. (A(a)) NaH, dry DMF, and 75 °C; (b) HNO3, AcOH, dry CH2Cl2, and r.t.; (c) SnCl2·2H2O, C2H5OH/AcOEt (1 : 1, v/v), and reflux; (d) 1,3-bis(tert-butoxycarbonyl)-2-methyl-2-thiopseudourea, Et3N, AgNO3, dry CH2Cl2, and r.t.; (e) SnCl4, AcOEt, and r.t. (B) Direct fluorescence titration of 0.5 μM EY with different concentrations of GC4AOEG (up to 13.8 μM) in HEPES buffer (10 mM, pH = 7.4), and λex = 517 nm. (Inset) The associated titration curve at λem = 537 nm and best fit according to a 1 : 1 binding stoichiometry. (C) Competitive fluorescence titration of GC4AOEG·EY (4.0/0.5 μM) with UFH (up to 8.4 μM in the concentration of monomer units of UFH), and λex = 517 nm. (Inset) The associated titration curve at λem = 537 nm and best fit according to a n : 1 competitive binding model, where n = 0.88.The binding affinity between GC4AOEG and UFH was firstly investigated via a competitive titration approach. In this paper, we defined the repeated disaccharide unit as the UFH monomer unit, and the UFH concentration in this paper is the UFH monomer unit concentration. Eosin Y (EY) was selected as the reporter dye, owing to its strong complexation with GC4AOEG and the drastic fluorescence quenching after complexation. The equilibrium association constant (Ka), between GC4AOEG and EY, was determined by direct fluorescence titration and fitted as (2.37 ± 0.12) × 105 M−1 with 1 : 1 binding stoichiometry (Fig. 2B). The displacement of EY from GC4AOEG·EY by gradual addition of UFH resulted in the recovery of the intrinsic emission of EY. The best-fitting of the competitive titration model afforded ca. 1 : 1 binding stoichiometry between GC4AOEG and each monomer unit of UFH, as well as an ultrahigh binding affinity Ka of (1.25 ± 0.13) × 107 M−1 (Fig. 2C).For in vitro analysis of the effectiveness of GC4AOEG against UFH, the activated partial thromboplastin time (aPTT) assay was conducted. The result (Fig. S8) indicates that one equivalent of GC4AOEG (to UFH monomer) fully neutralized UFH, similar to protamine. Very importantly, it is obvious that protamine alone negatively influenced the aPTT time. In contrast, GC4AOEG alone did not affect the clotting time, suggesting that GC4AOEG can specifically bind with UFH directly with minimal side influences. The coagulation factor X levels in the plasma analyzed via the enzyme-linked immunosorbent assay (ELISA) further confirmed the safety and reversal effect of GC4AOEG towards UFH (Fig. S9).Next, the biocompatibility of GC4AOEG was investigated in vitro. As an alkyl derivative of guanidinocalixarene, GC4A-6C (Fig. S4 and S5), which has a similar number of carbons (hexyl groups) at the lower rim to that of GC4AOEG, was also synthesized and examined in this study for comparative purposes. As shown in Fig. 3A and B, GC4AOEG (up to 200 μM) showed remarkably low cytotoxicity in several cell lines via MTT assays, in dramatic contrast to the relatively high cytotoxicity of GC4A-6C (Fig. 3C and D). The cellular toxicity of GC4A-6C was consistent with previous literature.36 In addition, alkyl derivatives of calixarene were generally more toxic than those without alkyl chains,37 likely attributed to their amphiphilic properties that may facilitate cell membrane disruption.38–40 The results suggested that the much-improved safety profile of GC4AOEG was attributed to oligoethylene glycol functionalization. Meanwhile, it is well known that cationic polymers or oligomers often show poor biocompatibility in the circulation system due to their non-selective binding to negatively charged RBC, resulting in RBC aggregation or hemolysis.41 Therefore, hemolysis and hemagglutination assays were conducted according to a method previously reported,42,43 with experimental details described in the method. The percent hemolysis of GC4A-6C (25, 50, 100 and 200 μM, respectively) was over 90%, which would limit its application in the circulatory system (Fig. S6), as a hemolysis ratio below 5% is considered safe.44 Conversely, GC4AOEG exhibited nearly negligible (less than 3%) hemolytic activity at concentrations of up to 200 μM, and no agglutination was visualized during incubation with RBC (Fig. 3F), implying that OEG functionalization at the lower rim reduced non-specific interactions with the RBC membrane, resulting in less disturbance of the membrane structure and function or cellular aggregations.Open in a separate windowFig. 3Biocompatibility study in cell lines and RBC. Cell viabilities of (A, C) 4T1 and (B, D) 293T, cells treated with different concentrations of GC4AOEG or GC4A-6C for 24 h. Each data point represents the mean ± S.E.M. from a set of experiments (n = 4). (E, G) Hemolysis test of GC4AOEG at different concentrations (NC = negative control; PC = positive control). Each data point represents the mean ± S.E.M. from a set of experiments (n = 3). (F) Agglutination test of RBC incubated with GC4AOEG at 2.0% hematocrit in normal saline.Inspired by the above findings, we further examined whether GC4AOEG may reverse bleeding in different mouse bleeding models under heparinization (with the experimental details described in the method, and the standard curve for the quantification of blood loss volume is showed in Fig. S7),45 with both the total time of bleeding and total volume of lost blood evaluated for each model. As a proof of concept, 200 U kg−1 UFH and 2.245 mg kg−1 GC4AOEG (molar ratio of GC4AOEG and each monomer unit of UFH = 1 : 1) were respectively used, as representative doses in the study and the dose of UFH was based on a literature report.46 In a mouse tail transection model as an external bleeding model, as shown in Fig. 4A–C, after tail transection, the bleeding time and blood loss volume for mice treated with normal saline were 58.9 ± 10.7 min and 72.2 ± 15.8 μL, respectively. As expected, treatment with UFH increased the bleeding time and blood volume to 121.5 ± 20.2 min and 264.0 ± 43.6 μL, respectively. In contrast, the bleeding time was dramatically reduced down to the blank control level, when the mice were treated with GC4AOEG at the same time of, or 30 s after, i.v. administration of UFH (53.8 ± 11.4 min and 89.0 ± 13.3 min, respectively). Accordingly, the blood loss volume of mice successively treated with UFH and GC4AOEG (1 : 1 ratio) reached the control level (72.6 ± 14.3 μL), indicating that the strong binding affinity between GC4AOEG and UFH ensured their recognition in vivo. Of note, there was no significant difference between the GC4AOEG treated group (without heparinization) and the saline treated group, suggesting a decent safety profile of the artificial receptor.Open in a separate windowFig. 4Reversal efficacy in in vivo mouse models. (A–C) Mouse tail transection model. (A) Scheme of the mouse tail transection model. (B) Total time of bleeding and (C) blood loss volume. (D–F & J) Mouse liver injury model. (D) Scheme of the mouse liver injury model. (E) Total time of bleeding and (F) blood loss weight. (J) Pictures exhibiting bleeding in liver injury before and after treatment. (G–I & K) Mouse femoral artery model. (G) Scheme of the mouse femoral artery model. (H) Total time of bleeding and (I) blood loss weight. (K) Pictures exhibiting bleeding in the femoral artery before and after treatment. All of those models were i.v. administration with normal saline (control), GC4AOEG (2.245 mg kg−1), or UFH (200 U kg−1) without and with GC4AOEG (2.245 mg kg−1, 1 : 1 molar stoichiometry of GC4AOEG and the monomer unit of UFH), and UFH–GC4AOEG 1 : 1 successively (GC4AOEG at a dose of 2.245 mg kg−1 30 s after UFH administration) respectively were quantified. Data presented are the mean ± S.E.M. (n = 6). *p < 0.05, ****p < 0.001, and ns represents “no significant difference” between the experimental group and the control group.In addition to external bleeding, internal bleeding such as liver injury model (Fig. 4D) was established in mice, and GC4AOEG''s reversal of UFH was further evaluated in vivo. Mice were i.v. administered with normal saline (control), GC4AOEG (2.245 mg kg−1), or UFH (200 U kg−1) without and with GC4AOEG (2.245 mg kg−1), and successive UFH–GC4AOEG 1 : 1 (30 s in between), respectively. In 2 minutes, the abdomen was surgically opened to expose the liver. A wound of 0.5 cm length and 2 mm depth, in the left lobe of the liver, was created. Considerable bleeding was immediately observed in the UFH treatment group (Fig. 4J), with the total bleeding time lasting for 450.5 ± 46.8 s, and the total blood loss of 571.0 ± 35.0 mg, in contrast to 143.7 ± 14.7 s total bleeding time and 238.0 ± 45.0 mg total blood loss observed in the saline treated group. Interestingly, the UFH–GC4AOEG treated group showed no significant difference from the normal saline treated group. To simulate the clinical use scenario, GC4AOEG was injected after UFH''s administration, and significantly reduced bleeding (from both time and volume perspectives) was observed, suggesting effective inhibition of the adverse effects of UFH, by GC4AOEG (Fig. 4E and F). GC4AOEG alone (without heparinization) did not exhibit any hematological toxicity in this model. To further evaluate the inhibitory effects of GC4AOEG against UFH in a preclinical model, a more serious internal bleeding model, femoral artery bleeding mouse model, was employed, and the treatment plan followed the previous two models described as above. Upon administration, the skin of the right leg and the overlying muscles were removed to expose the femoral artery and sciatic nerve. After an open injury at the middle segment of the femoral artery was created with a surgical scissor, blood gushed out immediately from the injured site (Fig. 4G and K). As shown in Fig. 4H and I, the longest average bleeding time (16.0 ± 1.9 min) and blood loss weight (103.8 ± 16.9 mg) were observed in the UFH treatment group of mice, in dramatic contrast to the bleeding time and blood loss of 3.9 ± 0.4 min and 24.7 ± 4.5 mg, respectively, in the normal saline treated group of mice. A bleeding time of 3.6 ± 0.4 min and blood loss of 20.8 ± 7.4 mg were recorded in the UFH–GC4AOEG treatment group. When UFH and GC4AOEG (at 1 molar equivalent) were successively injected, a bleeding time of 5.3 ± 0.7 min and blood loss of 27.7 ± 5.8 mg were noted, suggesting the significant reversal effects of GC4AOEG on UFH. Collectively, in all of the three bleeding models including internal and external bleeding models, i.v. administration of GC4AOEG significantly reversed UFH-induced excessive bleeding in external and internal injuries. More importantly, GC4AOEG alone exhibited negligible hematological activity, unlike other previously reported cationic small molecules, polymers, oligomers and macrocycles.Furthermore, in order to further verify the safety profile of GC4AOEG at the effective dose in vivo, acute toxicity evaluation was performed in a mouse model. After the i.v. injection of GC4AOEG in mice at a dose of 2.245 mg kg−1 (i.v. injection of normal saline as the control group), the body weight, behaviors, and overall survival of the treated mice were monitored every day for 3 weeks. All the treated mice remained alive and showed normal behaviors, as well as normal body weight evolvement similar to that of the control group (Fig. 5A). On day 21 post administration, mice were euthanized for blood and organ samples were harvested (for details see the method). The organ indexes of representative major organs including the heart, liver, spleen, lungs, and kidneys isolated from the GC4AOEG treated mice were comparable to those of the mice administered with normal saline, with no significant differences observed (Fig. 5B). Hematological parameters such as the counts of whole blood cells (WBCs), red blood cells (RBCs), platelets (PLTs) and hemoglobin (HGB) (Fig. 5C), as well as the serum concentrations of liver and kidney function biomarkers including blood urea nitrogen (BUN), creatinine (crea), urea alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were all analyzed thoroughly (Fig. 5D and E). These results indicated that the hematological parameters, renal and hepatic functions of the mice treated with GC4AOEG were comparable with those of the mice in the normal saline treated group. Moreover, histopathological examinations of the major organs of the GC4AOEG treated mice showed normal microstructures comparable with those of the control group (Fig. 5F). Collectively, these results suggested that the i.v. administration of GC4AOEG at the therapeutic dose is safe.Open in a separate windowFig. 5Preliminary acute toxicity evaluations on GC4AOEG. (A) Weight changes of mice after i.v. administration with a single dose of GC4AOEG. (B) Major organ indexes of the mice on day 21 post-administration with GC4AOEG. (C) Hematological parameters of the blood samples collected from the mice on day 21 after i.v. administration of GC4AOEG. (D) Renal and (E) hepatic functional biomarkers in the blood samples collected from the mice on day 21 after i.v. administration of GC4AOEG. Data are presented as mean ± S.E.M.; n = 6 for each group. (F) H&E histopathological analysis of the major organs from mice sacrificed 21 days after being injected with saline and GC4AOEG (2.245 mg kg−1). Scale bar = 100 μm.  相似文献   
180.
Song Z  Lü J  Zhao T 《Talanta》2001,53(6):2510-1177
A novel chemiluminescence (CL) sensor for isoniazid combined with flow-injection technology is presented in this paper. The analytical reagents, luminol and ferricyanide, were both immobilized on an anion-exchange column. The CL signal produced by the reaction between luminol and ferricyanide, which were eluted from the column through sodium phosphate injection, was decreased in the presence of isoniazid. The decreased CL intensity was linear with isoniazid concentration in the range 0.001–1.0 μg·ml−1; and the detection limit was 0.35 ng·ml−1 (3s). The whole process, including sampling and washing, could be completed in 2 min with a relative standard deviation of less than 4.1%. The sensor could be reused more than 400 times and has been applied for the determination of isoniazid in pharmaceutical preparations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号