首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163954篇
  免费   17591篇
  国内免费   9418篇
化学   83634篇
晶体学   1630篇
力学   12286篇
综合类   512篇
数学   41222篇
物理学   51679篇
  2024年   708篇
  2023年   2128篇
  2022年   3373篇
  2021年   3598篇
  2020年   4045篇
  2019年   3534篇
  2018年   12894篇
  2017年   12412篇
  2016年   10182篇
  2015年   5162篇
  2014年   5621篇
  2013年   7053篇
  2012年   11777篇
  2011年   18298篇
  2010年   10848篇
  2009年   11042篇
  2008年   11988篇
  2007年   13438篇
  2006年   4957篇
  2005年   5071篇
  2004年   4416篇
  2003年   4182篇
  2002年   3065篇
  2001年   2049篇
  2000年   1888篇
  1999年   1989篇
  1998年   1785篇
  1997年   1718篇
  1996年   1758篇
  1995年   1436篇
  1994年   1224篇
  1993年   1088篇
  1992年   910篇
  1991年   846篇
  1990年   697篇
  1989年   569篇
  1988年   437篇
  1987年   369篇
  1986年   393篇
  1985年   313篇
  1984年   197篇
  1983年   160篇
  1982年   147篇
  1981年   98篇
  1980年   88篇
  1979年   59篇
  1914年   45篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
21.
Endosomal escape remains a central issue limiting the high protein expression of mRNA therapeutics. Here, we present second near-infrared (NIR-II) lipid nanoparticles (LNPs) containing pH activatable NIR-II dye conjugated lipid (Cy-lipid) for potentiating mRNA delivery efficiency via a s timulus-responsive p hotothermal-promoted e ndosomal e scape d elivery (SPEED) strategy. In acidic endosomal microenvironment, Cy-lipid is protonated and turns on NIR-II absorption for light-to-heat transduction mediated by 1064 nm laser irradiation. Then, the heat-promoted LNPs morphology change triggers rapid escape of NIR-II LNPs from the endosome, allowing about 3-fold enhancement of enhanced green fluorescent protein (eGFP) encoding mRNA translation capacity compared to the NIR-II light free group. In addition, the bioluminescence intensity induced by delivered luciferase encoding mRNA in the mouse liver region shows positive correlation with incremental radiation dose, indicating the validity of the SPEED strategy.  相似文献   
22.
Poly(1,2-dithiolane)s are a family of intrinsically recyclable polymers due to their dynamic covalent disulfide linkages. Despite the common use of thiolate-initiated anionic ring-opening polymerization (ROP) under basic condition, cationic ROP is still not exploited. Here we report that disulfide bond can act as a proton acceptor, being protonated by acids to form sulfonium cations, which can efficiently initiate the ROP of 1,2-dithiolanes and result in high-molecular-weight (over 1000 kDa) poly(disulfide)s. The reaction can be triggered by adding catalytic amounts of acids and non-coordinating anion salts, and completed in few minutes at room temperature. The acidic conditions allow the applicability for acidic monomers. Importantly, the reaction condition can be under open air without inert protection, enabling the nearly quantitative chemical recycling from bulk materials to original monomers.  相似文献   
23.
Cancer is one of the deadliest diseases worldwide. Recent statistics have shown that metastases and tumor relapse are the leading causes of cancer-associated deaths. While traditional treatments are able to efficiently remove the primary tumor, secondary tumors remain poorly accessible. Capitalizing on this there is an urgent need for novel treatment modalities. Among the most promising approaches, increasing research interest has been devoted to immunogenic cell death inducing agents that are able to trigger localized cell death of the cancer cells as well as induce an immune response inside the whole organism. Preliminary studies have shown that immunogenic cell death inducing compounds could be able to overcome metastatic and relapsing tumors. Herein, the application of metal complexes as immunogenic cell death inducing compounds is systematically reviewed.  相似文献   
24.
Free carbene readily causes multiple side reactions due to its high energy, thus its asymmetric transformation is very difficult. We present here our findings of high-pKa Brønsted acid catalysts that enable free carbene insertion into N−H bonds of amines to prepare chiral α-amino acid derivatives with high enantioselectivity. Under irradiation with visible light, diazo compounds produce high-energy free carbenes that are captured by amines to form free ylide intermediates, and then the newly designed high-pKa Brønsted acids, chiral spiro phosphamides, promote the proton transfer of ylides to afford the products. Computational and kinetic studies uncover the principle for the rational design of proton-transfer catalysts and explain how the catalysts accelerate this transformation and provide stereocontrol.  相似文献   
25.
The corrosion, parasitic reactions, and aggravated dendrite growth severely restrict development of aqueous Zn metal batteries. Here, we report a novel strategy to break the hydrogen bond network between water molecules and construct the Zn(TFSI)2-sulfolane-H2O deep eutectic solvents. This strategy cuts off the transfer of protons/hydroxides and inhibits the activity of H2O, as reflected in a much lower freezing point (<−80 °C), a significantly larger electrochemical stable window (>3 V), and suppressed evaporative water from electrolytes. Stable Zn plating/stripping for over 9600 h was obtained. Based on experimental characterizations and theoretical simulations, it has been proved that sulfolane can effectively regulate solvation shell and simultaneously build the multifunctional Zn-electrolyte interface. Moreover, the multi-layer homemade modular cell and 1.32 Ah pouch cell further confirm its prospect for practical application.  相似文献   
26.
The electrochemical nitrate reduction reaction (NO3RR) is an appealing technology for regulating the nitrogen cycle. Metallic iron is one of the well-known electrocatalysts for NO3RR, but it suffers from poor durability due to leaching and oxidation of iron during the electrocatalytic process. In this work, a graphene-nanochainmail-protected iron nanoparticle (Fe@Gnc) electrocatalyst is reported. It displays superior nitrate removal efficiency and high nitrogen selectivity. Notably, the catalyst delivers exceptional stability and durability, with the nitrate removal rate and nitrogen selectivity remained ≈96 % of that of the first time after up to 40 cycles (24 h for one cycle). As expected, the conductive graphene nanochainmail provides robust protection for the internal iron active sites, allowing Fe@Gnc to maintain its long-lasting electrochemical nitrate catalytic activity. This research proposes a workable solution for the scientific challenge of poor lasting ability of iron-based electrocatalysts in large-scale industrialization.  相似文献   
27.
The development of conjugated polymers especially n-type polymer semiconductors is powered by the design and synthesis of electron-deficient building blocks. Herein, a strong acceptor building block with di-metallaaromatic structure was designed and synthesized by connecting two electron-deficient metallaaromatic units through a π-conjugated bridge. Then, a double-monomer polymerization methodology was developed for inserting it into conjugated polymer scaffolds to yield metallopolymers. The isolated well-defined model oligomers indicated polymer structures. Kinetic studies based on nuclear magnetic resonance and ultraviolet–visible spectroscopies shed light on the polymerization process. Interestingly, the resulted metallopolymers with dπ–pπ conjugations are very promising electron transport layer materials which can boost photovoltaic performance of an organic solar cell, with power conversion efficiency up to 18.28 % based on the PM6 : EH-HD-4F non-fullerene system. This work not only provides a facile route to construct metallaaromatic conjugated polymers with various functional groups, but also discovers their potential applications for the first time.  相似文献   
28.
A Markovnikov-selective hydrodifluoromethylation of alkynes with BrCF2H via nickel catalysis is described. This protocol proceeds via a migratory insertion of nickel hydride to alkyne followed by a CF2H-coupling, enabling straightforward access to diverse branched CF2H-alkenes with high efficiency and exclusive regioselectivity. The mild condition applies to a wide array of aliphatic and aryl alkynes with good functional group compatibility. Mechanistic studies are presented to support the proposed pathway.  相似文献   
29.
Non-oxidative dehydrogenation of propane is a highly efficient approach for industrial preparation of propene that is commonly catalyzed by noble Pt or toxic Cr catalysts and suffers from coking. In this work, ferric catalyst confined in a zeolite framework was synthesized by a hydrothermal procedure. The isolated Fe in the framework formed distorted tetrahedra, which were beneficial for the selective dehydrogenation of propane and reached over 95 % propene selectivity and over 99 % total olefins selectivity. This catalyst had a silanol-free structure and was oxygen tolerant, hydrothermally stable, and coke free, with a deactivation constant of 0.01 h−1. This study provided guidance for the synthesis of structural heteroatomic zeolite and efficient propane non-oxidative dehydrogenation over early transition metals.  相似文献   
30.
We herein disclose a mild and efficient access to chiral 3-azabicyclo[3.1.0]hexanes via a Pd-catalyzed asymmetric 5-exo-trig cyclization/cyclopropanation/carbonylation of 1,6-enynes. Various nucleophiles, such as alcohols, phenols, amines and water, are well compatible with the reaction system. This reaction forms three C−C bonds, two rings, two adjacent quaternary carbon stereocenters as well as one C−O/C−N bond with excellent regio- and enantioselectivities. The products could be further functionalized to generate a library of 3-azabicyclo[3.1.0]hexane frameworks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号