首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1673篇
  免费   267篇
  国内免费   167篇
化学   1245篇
晶体学   19篇
力学   71篇
综合类   6篇
数学   177篇
物理学   589篇
  2024年   2篇
  2023年   41篇
  2022年   71篇
  2021年   72篇
  2020年   84篇
  2019年   72篇
  2018年   58篇
  2017年   58篇
  2016年   80篇
  2015年   93篇
  2014年   102篇
  2013年   121篇
  2012年   161篇
  2011年   179篇
  2010年   110篇
  2009年   96篇
  2008年   102篇
  2007年   98篇
  2006年   84篇
  2005年   68篇
  2004年   65篇
  2003年   32篇
  2002年   33篇
  2001年   10篇
  2000年   24篇
  1999年   29篇
  1998年   31篇
  1997年   20篇
  1996年   23篇
  1995年   15篇
  1994年   16篇
  1993年   5篇
  1992年   7篇
  1991年   7篇
  1990年   12篇
  1989年   2篇
  1988年   2篇
  1987年   6篇
  1986年   9篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
排序方式: 共有2107条查询结果,搜索用时 15 毫秒
51.
Stab-resistant body armor can effectively prevent sharp instruments from attacking the protected parts and reduce the threat to human bodies. Shear thickening fluid (STF) is a kind of smart material with variable viscosity and its viscosity can change significantly with external stimuli. The soft and adaptive characteristics of STF provide a new idea for improving the performance of stab-proof materials. In this work, three kinds of soft anti-stabbing materials were designed and prepared with aramid, poly–p–phenylene benzodioxazole (PBO), and carbon fiber fabrics impregnated with STF. Quasi-static puncture tests and dynamic impact tests were conducted to compare the performance of different anti-stabbing structures. The results showed that the peak piercing force of the STF-treated fabrics in the puncture testing was greatly increased than that of neat samples. Against the D2 knife, the maximum impact load of STF/PBO fiber fabric was increased from 55.8 N to 72.9 N, increasing by 30.6%. Against the D3 spike, the maximum impact load of STF/aramid fabric was increased from 128.9 N to 254.7 N, increasing by 197.6%. The mechanical properties of fibers were important factors for the resistance to knives, and the fabric structure was the key point to bear the spike. Optical photographs of fabric fractures and scanning electron microscope analysis indicated that the STF effectively limited the slip of the fiber bundle when the tool penetrated the fabric, which played a positive role in maintaining the tightness and integrity of the fabric structure.  相似文献   
52.
Multidrug-resistant bacterial infections mediated by metallo-β-lactamases (MβLs) have grown into an emergent health threat, and development of novel antimicrobials is an ideal strategy to combat the infections. Herein, a novel vancomycin derivative Vb was constructed by conjugation of triazolylthioacetamide and vancomycin molecules, characterized by reverse-phase high performance liquid chromatography (HPLC) and confirmed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The biological assays revealed that Vb effectively inhibited S. aureus and methicillin-resistant S. aureus (MRSA), gradually increased the antimicrobial effect of β-lactam antibiotics (cefazolin, meropenem and penicillin G) and exhibited a dose-dependent synergistic antibacterial effect against eight resistant strains tested, which was confirmed by the time-kill curves determination. Most importantly, Vb increased the antimicrobial effect of meropenem against the clinical isolates EC08 and EC10 and E. coli producing ImiS and CcrA, resulting in a 4- and 8-fold reduction in MIC values, respectively, at a dose up to 32 μg/mL. This work offers a promising scaffold for the development of MβLs inhibitors, specifically antimicrobials for clinically drug-resistant isolates.  相似文献   
53.
Electrical double-laye r capacitors are widely concerned fo r their high power density,long cycling life and high cycling efficiency.However,their wide application is limited by their low energy density.In this study,we propose a simple yet environmental friendly method to synthesize cobalt and nitrogen atoms co-doped porous carbon(CoAT-NC) material.Cobalt atoms connected with primarily pyridinic nitrogen atoms can be uniformly dispersed in the amorphous carbon matrix,which is benefit for improving electrical conductivity and density of states of the carbon material.Therefore,an enhanced perfo rmance is expected when CoAT-NC is served as electrode in a supercapacitor device.CoAT-NC displays a good gravimetric capacitance of 160 F/g at 0.5 A/g combing with outstanding capacitance retention of 90% at an extremely high current density of 100 A/g in acid electrolyte.Furthermore,a good energy density of30 Wh/kg can be obtained in the organic electrolyte.  相似文献   
54.
In this work, a rapid method for the simultaneous determination of N and S in seafood was established based on a solid sampling absorption-desorption system coupled with a thermal conductivity detector. This setup mainly includes a solid sampling system, a gas line unit for controlling high-purity oxygen and helium, a combustion and reduction furnace, a purification column system for moisture, halogen, SO2, and CO2, and a thermal conductivity detector. After two stages of purging with 20 s of He sweeping (250 mL/min), N2 residue in the sample-containing chamber can be reduced to <0.01% to improve the device’s analytical sensitivity and precision. Herein, 100 s of heating at 900 °C was chosen as the optimized decomposition condition. After the generated SO2, H2O, and CO2 were absorbed by the adsorption column in turn, the purification process executed the vaporization of the N-containing analyte, and then N2 was detected by the thermal conductivity cell for the quantification of N. Subsequently, the adsorbed SO2 was released after heating the SO2 adsorption column and then transported to the thermal conductivity cell for the detection and quantification of S. After the instrumental optimization, the linear range was 2.0–100 mg and the correlation coefficient (R) was more than 0.999. The limit of detection (LOD) for N was 0.66 μg and the R was less than 4.0%, while the recovery rate ranged from 95.33 to 102.8%. At the same time, the LOD for S was 2.29 μg and the R was less than 6.0%, while the recovery rate ranged from 92.26 to 105.5%. The method was validated using certified reference materials (CRMs) and the measured N and S concentrations agreed with the certified values. The method indicated good accuracy and precision for the simultaneous detection of N and S in seafood samples. The total time of analysis was less than 6 min without the sample preparation process, fulfilling the fast detection of N and S in seafood. The establishment of this method filled the blank space in the area of the simultaneous and rapid determination of N and S in aquatic product solids. Thus, it provided technical support effectively to the requirements of risk assessment and detection in cases where supervision inspection was time-dependent.  相似文献   
55.

为了探讨无限弹性土体内圆柱形洞室在突加反平面冲击荷载作用下的瞬态响应,利用Laplace变换及围道积分逆变换,得到土体位移和应力的一般解析表达式,并给出了数值解。在时域内分析了无限弹性土体内圆柱形孔洞在轴向荷载作用下的动力响应,并将计算结果与采用拉普拉斯数值反变换得到的结果以及静力情况下的结果作了比较。研究结果显示:波到达后,该点土体的应力和位移均瞬间增大,随后慢慢减小,并逐渐趋于静力值;波向外发散传播,并沿半径方向衰减,衰减速度比静力情况的应力衰减慢。

  相似文献   
56.
Non-canonical nuclear factor kappa B (NF-κB) signaling pathway regulates many physiological and pathological processes, including liver homeostasis and diseases. Recent studies demonstrate that non-canonical NF-κB signaling pathway plays an essential role in hyperglycemia, non-alcoholic fatty liver disease, alcoholic liver disease, liver regeneration, liver injury, autoimmune liver disease, viral hepatitis, and hepatocellular carcinoma. Small-molecule inhibitors targeting to non-canonical NF-κB signaling pathway have been developed and shown promising results in the treatment of liver injuries. Here, the recent advances and future prospects in understanding the roles of the non-canonical NF-κB signaling pathways in the regulation of liver diseases are discussed.  相似文献   
57.
The occurrence of planar hexacoordination is very rare in main group elements. We report here a class of clusters containing a planar hexacoordinate silicon (phSi) atom with the formula SiSb3M3+ (M = Ca, Sr, Ba), which have D3h (1A1′) symmetry in their global minimum structure. The unique ability of heavier alkaline-earth atoms to use their vacant d atomic orbitals in bonding effectively stabilizes the peripheral ring and is responsible for covalent interaction with the Si center. Although the interaction between Si and Sb is significantly stronger than the Si–M one, sizable stabilization energies (−27.4 to −35.4 kcal mol−1) also originated from the combined electrostatic and covalent attraction between Si and M centers. The lighter homologues, SiE3M3+ (E = N, P, As; M = Ca, Sr, Ba) clusters, also possess similar D3h symmetric structures as the global minima. However, the repulsive electrostatic interaction between Si and M dominates over covalent attraction making the Si–M contacts repulsive in nature. Most interestingly, the planarity of the phSi core and the attractive nature of all the six contacts of phSi are maintained in N-heterocyclic carbene (NHC) and benzene (Bz) bound SiSb3M3(NHC)6+ and SiSb3M3(Bz)6+ (M = Ca, Sr, Ba) complexes. Therefore, bare and ligand-protected SiSb3M3+ clusters are suitable candidates for gas-phase detection and large-scale synthesis, respectively.

The global minimum of SiSb3M3+ (M = Ca, Sr, Ba) is a D3h symmetric structure containing an elusive planar hexacoordinate silicon (phSi) atom. Most importantly, the phSi core remains intact in ligand protected environment as well.

Exploring the bonding capacity of main-group elements (such as carbon or silicon) beyond the traditional tetrahedral concept has been a fascinating subject in chemistry for five decades. The 1970 pioneering work of Hoffmann and coworkers1 initiated the field of planar tetracoordinate carbons (ptCs), or more generally, planar hypercoordinate carbons. The past 50 years have witnessed the design and characterization of an array of ptC and planar pentacoordinate carbon (ppC) species.2–14 However, it turned out to be rather challenging to go beyond ptC and ppC systems. The celebrated CB62− cluster and relevant species15,16 were merely model systems because C avoids planar hypercoordination in such systems.17,18 In 2012, the first genuine global minimum D3h CO3Li3+ cluster was reported to have six interactions with carbon in planar form, although electrostatic repulsion between positively charged phC and Li centers and the absence of any significant orbital interaction between them make this hexacoordinate assignment questionable.19 It was only very recently that a series of planar hexacoordinate carbon (phC) species, CE3M3+ (E = S–Te; M = Li–Cs), were designed computationally by the groups of Tiznado and Merino (Fig. 1; left panel),20 in which there exist pure electrostatic interactions between the negative Cδ− center and positive Mδ+ ligands. These phC clusters were achieved following the so-called “proper polarization of ligand” strategy.Open in a separate windowFig. 1The pictorial depiction of previously reported phC CE3M3+ (E = S–Te; M = Li–Cs) clusters and the present SiE3M3+ (E = S–Te and N–Sb; M = Li–Cs and Ca–Ba) clusters. Herein the solid and dashed lines represent covalent and ionic bonding, respectively. The opposite double arrows illustrate electrostatic repulsion.The concept of planar hypercoordinate carbons has been naturally extended to their next heavier congener, silicon-based systems. Although the steric repulsion between ligands decreases due to the larger size, the strength of π- and σ-bonding between the central atom and peripheral ligands dramatically decreases, which is crucial for stability. Planar tetracoordinate silicon (ptSi) was first experimentally observed in a pentaatomic C2v SiAl4 cluster by Wang and coworkers in 2000.21 Very recently, this topic got a huge boost by the room-temperature, large-scale syntheses of complexes containing a ptSi unit.22 A recent computational study also predicted the global minimum of SiMg4Y (Y = In, Tl) and SiMg3In2 to have unprecendented planar pentacoordinate Si (ppSi) units.23 Planar hexacoordinate Si (phSi) systems seem to be even more difficult to stabilize. Previously, a C2v symmetric Cu6H6Si cluster was predicted as the true minimum,24 albeit its potential energy surface was not fully explored. A kinetically viable phSi SiAl3Mg3H2+ cluster cation was also predicted.25 However, these phSi systems24,25 are only local minima and not likely to be observed experimentally. In 2018, the group of Chen identified the Ca4Si22− building block containing a ppSi center and constructed an infinite CaSi monolayer, which is essentially a two-dimensional lattice of the Ca4Si2 motif.26 Thus, it is still an open question to achieve a phSi atom to date.Herein we have tried to find the correct combination towards a phSi system as the most stable isomer. Gratifyingly, we found a series of clusters, SiE3M3+ (E = N, P, As, Sb; M = Ca, Sr, Ba), having planar D3h symmetry with Si at the center of the six membered ring, as true global minimum forms. Si–E bonds are very strong in all the clusters, and alkaline-earth metals interact with the Si center by employing their d orbitals. However, electrostatic repulsion originated from the positively charged Si and M centers for E = N, P, and As dominates over attractive covalent interaction, making individual Si–M contacts repulsive in nature. This makes the assignment of SiE3M3+ (E = N, P, As; M = Ca, Sr, Ba) as genuine phSi somewhat skeptical. SiSb3M3+ (M = Ca, Sr, Ba) clusters are the sole candidates which possess genuine phSi centers as both electrostatic and covalent interactions in Si–M bonds are attractive. The d orbitals of M ligands play a crucial role in stabilizing the ligand framework and forming covalent bonds with phSi. Such planar hypercoordinate atoms are, in general, susceptible to external perturbations. However, the present title clusters maintain the planarity and the attractive nature of the bonds even after multiple ligand binding at M centers in SiSb3M3(NHC)6+ and SiSb3M3(Bz)6+. This would open the door for large-scale synthesis of phSi as well.Two major computational efforts were made before reaching our title phSi clusters. The first one is to examine SiE3M3+ (E = S–Po; M = Li–Cs) clusters, which adopt D3h or C3v structures as true minima (see Table S1 in ESI), being isoelectronic to the previous phC CE3M3+ (E = S–Po; M = Li–Cs) clusters. In the SiE3M3+ (E = S–Po; M = Li–Cs) clusters, the Si center always carries a positive charge ranging from 0.01 to +1.03|e|, in contrast to the corresponding phC species (see Fig. 1). Thus, electrostatic interactions between the Siδ+ and Mδ+ centers would be repulsive (Fig. 1). Given that the possibility of covalent interaction with an alkali metal is minimal, it would be a matter of debate whether they could be called true coordination. A second effort is to tune the electronegativity difference between Si and M centers so that the covalent contribution in Si–M bonding becomes substantial. Along this line, we consider the combinations of SiE3M3+ (E = N, P, As, Sb; M = Be, Mg, Ca, Sr, Ba). The results in Fig. S1 show that for E = Be and Mg, the phSi geometry has a large out-of-plane imaginary frequency mode, which indicates a size mismatch between the Si center and peripheral E3M3 (E = N–Bi; M = Be, Mg) ring. On the other hand, the use of larger M = Ca, Sr, Ba atoms effectively expands the size of the cavity and eventually leads to perfect planar geometry with Si atoms at the center as minima. In the case of SiBi3M3+, the planar isomer possesses a small imaginary frequency for M = Ca. Although planar SiBi3Sr3+ and SiBi3Ba3+ are true minima, they are 2.2 and 2.5 kcal mol−1 higher in energy than the lowest energy isomer, respectively (Fig. S2). Fig. 2 displays some selected low-lying isomers of SiE3M3+ (E = N, P, As, Sb; M = Ca, Sr, Ba) clusters (see Fig. S3–S6 for additional isomers). The global minimum structure is a D3h symmetric phSi with an 1A1′ electronic state for all the twelve cases. The second lowest energy isomer, a ppSi, is located more than 49 kcal mol−1 above phSi for E = N. This relative energy between the most stable and nearest energy isomer gradually decreases upon moving from N to Sb. In the case of SiSb3M3+ clusters, the second-lowest energy isomer is 4.6–6.1 kcal mol−1 higher in energy than phSi. The nearest triplet state isomer is very high in energy (by 36–53 kcal mol−1, Fig. S3–S6) with respect to the global minimum.Open in a separate windowFig. 2The structures of low-lying isomers of SiE3M3+ (E = N, P, As, Sb; M = Ca, Sr, Ba) clusters. Relative energies (in kcal mol−1) are shown at the single-point CCSD(T)/def2-TZVP//PBE0/def2-TZVP level, followed by a zero-energy correction at PBE0. The values from left to right refer to Ca, Sr, and Ba in sequence. The group symmetries and electronic states are also given.Born–Oppenheimer molecular dynamics (BOMD) simulations at room temperature (298 K), taking SiE3Ca3+ clusters as case studies, were also performed. The results are displayed in Fig. S7. All trajectories show no isomerization or other structural alterations during the simulation time, as indicated by the small root mean square deviation (RMSD) values. The BOMD data suggest that the global minimum also has reasonable kinetic stability against isomerization and decomposition.The bond distances, natural atomic charges, and bond indices for SiE3Ca3+ clusters are given in for M = Sr, Ba). The Si–E bond distances are shorter than the typical Si–E single bond distance computed using the self-consistent covalent radii proposed by Pyykkö.27 In contrast, the Si–M bond distance is almost equal to the single bond distance. This gives the first hint of the presence of covalent bonding therein. However, the Wiberg bond indices (WBIs) for the Si–M links are surprisingly low (0.02–0.04). We then checked the Mayer bond order (MBO), which can be seen as a generalization of WBIs and is more acceptable since the approach of WBI calculations assumes orthonormal conditions of basis functions while the MBO considers an overlap matrix. The MBO values for the Si–M links are now sizable (0.13–0.18). These values are reasonable considering the large difference in electronegativity between Si and M, and, therefore, only a very polar bond is expected between them. In fact, the calculations of WBIs after orthogonalization of basis functions by the Löwdin method gives significantly large bond orders (0.48–0.55), which is known to overestimate the bond orders somewhat. The above results indicate that the presence of covalent bonding cannot be ruled out only by looking at WBI values.Bond distances (r, in Å), different bond orders (WBIs) {MBOs} [WBI in orthogonalized basis], and natural atomic charges (q, in |e|) of SiE3Ca3+ (E = N, P, As, Sb) clusters at the PBE0/def2-TZVP level
r Si–E r Si–Ca r E–Ca q Si q E q Ca
E = N1.6692.5552.2461.57−1.931.74
(1.14) {1.23} [1.84](0.02) {0.13} [0.51](0.22) {0.67} [0.84]
E = P2.1802.9352.6400.25−1.421.67
(1.34) {1.11} [1.52](0.03) {0.14} [0.54](0.27) {0.74} [1.05]
E = As2.3013.0042.7210.07−1.341.65
(1.33) {1.10} [1.45](0.03) {0.15} [0.55](0.29) {0.71} [1.12]
E = Sb2.5383.1552.896−0.39−1.161.62
(1.29) {1.01} [1.33](0.04) {0.18} [0.48](0.30) {0.78} [1.14]
Open in a separate windowOur following argument regarding the presence of covalent Si–M bonding is based on energy decomposition analysis (EDA) in combination with natural orbital for chemical valence (NOCV) theory. We first performed EDA by taking Ca and SiE3Ca2 in different charge and electronic states as interacting fragments to get the optimum fragmentation scheme that suits the best to describe the bonding situation (see Tables S6–S9). The size of orbital interaction (ΔEorb) is used as a probe.28 For all cases, Ca+ (D, 4s1) and SiE3Ca2 (D) in their doublet spin states turn out to be the best schemes, which give the lowest ΔEorb value.
Energy termInteractionCa+ (D, 4s1) + SiN3Ca2 (D)Ca+ (D, 4s1) + SiP3Ca2 (D)Ca+ (D, 4s1) + SiAs3Ca2 (D)Ca+ (D, 4s1) + SiSb3Ca2 (D)
ΔEint−192.9−153.0−144.9−129.9
ΔEPauli139.8115.2115.7110.9
ΔEelstata−162.0 (48.7%)−116.4 (43.4%)−113.0 (43.4%)−100.9 (41.9%)
ΔEorba−170.7 (51.3%)−151.8 (56.6%)−147.6 (56.6%)−140.0 (58.1%)
ΔEorb(1)bSiE3Ca2–Ca+(s) electron-sharing σ-bond−89.2 (52.3%)−79.4 (52.3%)−74.3 (50.3%)−66.9 (47.8%)
ΔEorb(2)bSiE3Ca2 → Ca+(d) π‖-donation−32.9 (19.3%)−32.0 (21.1%)−31.8 (21.5%)−30.8 (22.0%)
ΔEorb(3)bSiE3Ca2 → Ca+(d) σ-donation−13.1 (7.7%)−11.9 (7.8%)−12.0 (8.1%)−11.9 (8.5%)
ΔEorb(4)bSiE3Ca2 → Ca+(d) π-donation−12.3 (7.2%)−12.2 (8.0%)−12.5 (8.5%)−12.5 (8.9%)
ΔEorb(5)bSiE3Ca2 → Ca+(d) δ-donation−8.1 (4.7%)−9.9 (6.5%)−10.9 (7.4%)−11.8 (8.4%)
ΔEorb(rest)b−15.1 (8.8%)−6.4 (4.2%)−6.1 (4.1%)−6.1 (4.4%)
Open in a separate windowaThe values in parentheses are the percentage contributions to total attractive interactions (ΔEelstat + ΔEorb).bThe values in parentheses are the percentage contributions to the total orbital interaction ΔEorb.The decomposition of ΔEorb into pair-wise orbital interaction ΔEorb(n) in Fig. 3) helps us to identify the Si–Ca covalent bond and the orbitals involved in the pairwise interactions. The s orbital of Ca+ takes part in the electron-sharing σ-bond formation with SiE3Ca2, whereas vacant d AOs of Ca+ act as acceptor orbitals in the dative interactions, ΔEorb(2)–(5). Therefore, d AOs of Ca+ are responsible for 39–48% of the total orbital interaction. The present results further strengthen the proposal29–33 that heavier alkaline-earth elements (Ca, Sr, and Ba) should be classified as transition metals rather than main-group elements. Furthermore, a careful look at the Δρ(n) plots shows that in ΔEorb(1) and ΔEorb(2) only peripheral atoms are involved, but in ΔEorb(3)–(5) there is direct covalent interaction between Si and Ca centers. To correlate with the molecular orbitals (MOs) of the SiE3Ca3+ cluster, the related MOs for 24 valence electrons are given in Fig. S8. Δρ(3)–(5) can be correlated with HOMO-4, the HOMO and the HOMO′, respectively. Therefore, although the MO coefficient of Ca centers is small, they should not be neglected as the energy stabilization coming from them is significant. Si and M centers are only connected through delocalized bonds which is the reason for not having any gradient path between them as is indicated in the electron density analysis. Instead, there is a ring critical point at the center of the SiE2M ring (see Fig. S9). The results of adaptive natural density partitioning (AdNDP) analysis also corroborate this, where M centers are connected with the Si center through 7c–2e π-bonds (see Fig. S10).Open in a separate windowFig. 3Plot of the deformation densities, Δρ(1)–(5) corresponding to ΔEorb(1)–(5) and the related interacting orbitals of the fragments in the SiN3Ca3+ cluster at the PBE0/TZ2P-ZORA//PBE0/def2-TZVP level. The orbital energy values are in kcal mol−1. The charge flow of the deformation densities is from red to blue. The isovalue for Δρ(1) is 0.001 au and for the rest is 0.0005 au.Another aspect is to check the nature of electrostatic interaction between Si and M. The natural charges in ). Thus, the SiSb3M3+ cluster presents a case in which covalent bonding is robust and ionic interaction between Si and M centers is attractive in nature. If we look at the inter-atomic interaction energies (VTotal) for Si–M bonds and M–E bonds, it can be understood that the repulsive energy in Si–M bonds is largely overcompensated by two M–E bonds, even for E = N. This is the reason why electrostatic repulsion between Si and M centers does not result in a very large Si–M bond distance. Nevertheless, repulsive Si–M contacts in SiE3M3+ (E = N, P, As) make hexacoordination assignment skeptical. SiSb3M3+ clusters should be considered to possess phSi convincingly. Note that the IUPAC definition of coordination number only demands “the number of other atoms directly linked to that specified atom”,34 but does not say about the overall nature of interaction between them. In SiSb3M3+, phSi is linked to three Sb atoms through strong covalent bonds and is bound to three M atoms through ionic interaction in combination with a weaker covalent interaction. These clusters are only weakly aromatic because of such polar electronic distribution (see Fig. S11).The next challenge is to protect the reactive centers of phSi clusters with bulky ligands, which is required for large scale synthesis. This is not an easy task since slight external perturbation of most of the planar hypercoordinate atom species could result in a loss in planarity. Few years ago, the groups of Ding and Merino35 reported CAl4MX2 (M = Zr, Hf; X = F–I, C5H5) where ppC is sandwiched and protected by a metallocene framework. Therefore, the presence of X groups is mandatory to provide the electronic stabilization in ppC. In the present cases, surprisingly, SiSb3M3+ clusters are found to maintain the planarity around hexagons even after the coordination of M centers with six N-heterocyclic carbene (NHC) and benzene (Bz) ligands forming SiSb3M3(NHC)6+ and SiSb3M3(Bz)6+ (M = Ca, Sr, Ba) complexes, respectively (see Fig. 4). These complexes are highly stable against ligand dissociation as reflected by the high bond dissociation energy (De = 236.1 (Ca), 203.9 (Sr) and 171.3 (Ba) kcal mol−1) for SiSb3M3(NHC)6+ → SiSb3M3+ + 6NHC and De = 153.8 (Ca), 128.0 (Sr) and 114.0 (Ba) kcal mol−1 for SiSb3M3(Bz)6+ → SiSb3M3+ + 6Bz. The Si–M bond distances are slightly elongated because of coordination with the ligands. But the results of IQA given in Table S13 show that Si–M bonds have attractive interaction energies ranging between −20.0 and −32.4 kcal mol−1. Therefore, the planarity of the phSi core and the attractive nature of all the six contacts of phSi are maintained in ligand-bound SiSb3M3(NHC)6+ and SiSb3M3(Bz)6+ (M = Ca, Sr, Ba) complexes.Open in a separate windowFig. 4The minimum energy geometries of SiSb3M3(NHC)6+ and SiSb3M3(Bz)6+ (M = Ca, Sr, Ba) complexes at the PBE0-D3(BJ)/def2-TZVP level.In summary, we have theoretically achieved the first series of planar hexacoordinate silicon (phSi) clusters, SiSb3M3+ (M = Ca, Sr, Ba), by exploring their potential energy surfaces. These phSi systems are both thermodynamically and kinetically stable. The global minimum structures of SiE3M3+ (E = N, P, As, Sb) clusters have a D3h symmetry with the 1A1′ electronic state. The ability of the heavier alkaline-earth metals (Ca–Ba) to utilize their d orbitals in chemical bonding is a key factor that underlies the stability of these systems. The Ca–Ba ligands form weak covalent bonding with Si centers through their d orbitals, mimicking transition metals. The electronic charge distribution and IQA analysis show that electrostatic interaction in the Si–Ca links is essentially repulsive in SiN3M3+, but it sharply reduces with the decrease in electronegativity of E. Eventually, a sizable electrostatic attractive interaction exists between Si and M centers in SiSb3M3+, leading to a truly unprecedented phSi bonding motif that is held together by both covalent bonding and attractive ionic interaction. For SiE3M3+ (E = N, P, As) clusters, the electrostatic repulsion between Si and M dominates over covalent interaction, making Si–M contacts repulsive in nature. Most interestingly, the planarity of the phSi core and the attractive nature of all the six contacts of phSi are maintained in N-heterocyclic carbene (NHC) and benzene (Bz) bound SiSb3M3(NHC)6+ and SiSb3M3(Bz)6+ (M = Ca, Sr, Ba) complexes. Therefore, such clusters protected by bulky ligands would be suitable candidates for large scale synthesis in the presence of bulky counter-ions. Recent experimental reports on ptSi systems have already stimulated much curiosity within the community, and the present results would undoubtedly act as a stimulus to it.  相似文献   
58.
Selective photocatalytic aerobic oxidation of methane into carbon monoxide over Ag/AgCl@SiO2     
Jianxin Zhai  Baowen Zhou  Haihong Wu  Shuaiqiang Jia  Mengen Chu  Shitao Han  Wei Xia  Mingyuan He  Buxing Han 《Chemical science》2022,13(16):4616
Design of active catalysts for chemical utilization of methane under mild conditions is of great importance, but remains a challenging task. Here, we prepared a Ag/AgCl with SiO2 coating (Ag/AgCl@SiO2) photocatalyst for methane oxidation to carbon monoxide. High carbon monoxide production (2.3 μmol h−1) and high selectivity (73%) were achieved. SiO2 plays a key role in the superior performance by increasing the lifetime of the photogenerated charge carriers. Based on a set of semi in situ infrared spectroscopy, electron paramagnetic resonance, and electronic property characterization studies, it is revealed that CH4 is effectively and selectively oxidized to CO by the in situ formation of singlet 1O2via the key intermediate of COOH*. Further study showed that the Ag/AgCl@SiO2 catalyst could also drive valuable conversion using real sunlight under ambient conditions. As far we know, this is the first work on the application of SiO2 modified Ag/AgCl in the methane oxidation reaction.

The Ag/AgCl@SiO2 catalyst exhibits excellent photocatalytic activity in selective aerobic oxidation of methane to carbon monoxide with high selectivity, and extended real light simulation feasibility shows potential in practical application.  相似文献   
59.
A Porphyrin-Based Covalent Organic Framework for Metal-Free Photocatalytic Aerobic Oxidative Coupling of Amines     
Huijie He  Xu Fang  Dr. Dong Zhai  Wei Zhou  Yimeng Li  Wenling Zhao  Dr. Chengcheng Liu  Dr. Zhen Li  Prof. Weiqiao Deng 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(58):14390-14395
Imines are important intermediates in drug synthesis. Photocatalytic aerobic oxidative coupling of amines has been considered as a clean and promising way to produce imines and has attracted great attention. Herein, we designed and synthesized a novel two-dimensional porphyrin-based covalent organic framework (Por-BC-COF) which adopts an AA stacking mode with excellent crystallinity, high Brunauer–Emmett–Teller surface areas (1200 m2 g−1), wide light absorption range (200–1300 nm) and good stability in a variety of organic solvents. Por-BC-COF can be used as a metal-free heterogeneous photocatalyst for the photocatalytic oxidation of amines to imines under visible light and red light with a high yield (97 %). This work presents a novel and efficient COF photocatalyst in the application of light-driven organic synthesis.  相似文献   
60.
Capillary Electrophoresis-Indirect Laser-Induced Fluorescence Detection of Neomycin in Fish     
Huang  Yejing  Han  Xiufen  Yu  Xiao  Wang  Shumei  Zhai  Haiyun 《Chromatographia》2021,84(9):861-868
Chromatographia - A capillary electrophoresis-indirect laser-induced fluorescence detection method was established for neomycin detection in fish. With rhodamine 6G as the background fluorescent...  相似文献   
[首页] « 上一页 [1] [2] [3] [4] [5] 6 [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号