首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1358篇
  免费   96篇
  国内免费   28篇
化学   1112篇
晶体学   9篇
力学   33篇
数学   112篇
物理学   216篇
  2023年   14篇
  2022年   43篇
  2021年   55篇
  2020年   74篇
  2019年   76篇
  2018年   102篇
  2017年   74篇
  2016年   101篇
  2015年   68篇
  2014年   94篇
  2013年   157篇
  2012年   128篇
  2011年   126篇
  2010年   83篇
  2009年   72篇
  2008年   53篇
  2007年   33篇
  2006年   23篇
  2005年   19篇
  2004年   12篇
  2003年   10篇
  2002年   11篇
  2001年   5篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1992年   3篇
  1990年   1篇
  1988年   1篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1977年   4篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1932年   1篇
排序方式: 共有1482条查询结果,搜索用时 15 毫秒
71.
ABSTRACT

In this work, a novel layered sorbent for microextraction by packed sorbent (MEPS) was introduced, which has been prepared by coating graphene oxide/polyamide (GO/PA) nanocomposite (NC) onto cellulose paper through solvent exchange method. Scanning electron microscopy (SEM) was applied to investigate the surface characteristic and morphology of PA and GO/PA NC coated on cellulose paper. The prepared MEPS device was used for extraction of organophosphorous pesticides (OPPs) including chlorpyrifos, fenthion, fenithrothion, ethion, edifenphos and phosalone in environmental aqueous samples followed by detection using gas chromatography-flame ionisation detector (GC-FID). Important parameters affecting the MEPS method including pH of sample solution, extraction draw-discard cycles, sorbent layers, desorption solvent volume and desorption draw-eject number were studied and optimised using central composite design (CCD). Based on the method validation, limits of detection (LODs) were in the range of 0.2–1 µg L?1. The calibration graphs for chlorpyrifos, fenthion and edifenphos are linear in the concentration range of 1 to 500 µg L?1; for ethion and phosalone are linear in the range of 1–1000 µg L?1 and for fenithrothion is linear in the range of 3–1000 µg L?1. The method precision (RSD %) with six replicates determinations was in the range of 3 to 9.4 % and 3.9 to 11.9% for distilled water and spiked river water sample, respectively, at the concentration level of 300 µg L?1 . The developed method was applied successfully to determine OPP compounds in river, dam and tap water samples; accordingly, the relative recoveries (RR%) were obtained in the range of 77.8 to 113.3%.  相似文献   
72.
A planar, polycyclic and aromatic hydrocarbon ligand, namely 9,10-phenanthrenequinone semicarbazone, and its transition metal complexes have been synthesized and structurally characterized. The in vitro antiproliferative activity of these compounds against five human cancer cell lines revealed that they were effective against androgen receptor-positive/negative prostate cancer cells as well as COX-positive pancreatic BxPC-3 cancer cell line. The driving force behind such antiproliferative activity seems to be the up-regulated COX expression in these cells, which was amenable for targeting through metal complexation. These structural motifs can, therefore, serve as a starting point for developing novel cytotoxic agents against the growing number of prostate and pancreatic cancers.  相似文献   
73.
Adsorption and recovery of uranium by nanoporous MCM-41 from aqueous solutions (synthetic solution and uranium conversion facility liquid waste) were investigated by use of a fixed-bed column (1.2 cm diameter and 3.0 cm height). Adsorption was carried out at flow rates 0.2 and 0.5 mL min?1, which correspond to retention times of 10 and 6 min. The maximum breakthrough capacity for uranium ions was achieved by use of nanoporous MCM-41 at the optimum pH of 3.6 and flow rate 0.2 mL min?1 (61.95 μg g?1). The Thomas and Yan models were applied to the experimental data, by use of linear regression, to determine the characteristics of the column for process design. The breakthrough curves calculated from the models were in good agreement with the experimental data. The elution behavior of uranium on nanoporous MCM-41 was studied with different eluents; the results showed that 0.1 M HCl is good eluent for uranium recovery. The regenerated column could be used in a multitude of adsorption–desorption cycles.  相似文献   
74.
An little known yet significant issue in petroleum production processes in petroleum reservoirs is asphaltene precipitation/deposition. Asphaltene has not only a fuzzy and vague nature but it also can cause detrimental problems like reservoir blockage and, as a result, low oil recovery. To tackle this issue, many researchers have attempted to monitor asphaltene behavior versus thermodynamic conditions. A thermodynamic micellization approach is implemented in this work to describe asphaltene precipitation behavior for two sample fluids from Iranian reservoirs. First, the basic structures of the addressed approach and different contributions to Gibbs free energy of micellization proposed by Victorov and Firoozabadi (VF) are demonstrated. Second, a detailed sensitivity analysis with respect to the model parameters is performed by utilizing a new calculation strategy. Finally, a comparison between the predicted precipitation curve and the experimental one is illustrated; moreover, comparing our results with those reported by Victorov proves the superiority of the new strategy over the conventional one. The significance of this study shows the effect of each micellization parameter on the asphaltene precipitation behavior curve and illustrates the ability of the micellization approach evolved by VF in monitoring the effect of pressure on asphaltene precipitation using the new calculation procedure. Outcomes from this study could couple with commercial reservoir simulation software to improve precision and integrity for designing robust and effective production units.  相似文献   
75.
In this work, a polypyrrole/multiwalled carbon nanotubes composite decorated with Fe3O4 nanoparticles was chemically synthesized and applied as a novel adsorbent for the extraction of methocarbamol from human plasma. Electrospray ionization ion mobility spectrometry was used for the determination of the analyte. The properties of the magnetic‐modified adsorbent were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform IR spectroscopy, and X‐ray diffraction. The effects of experimental parameters on the extraction efficiency of the sorbent were investigated. Under the optimized conditions, the linear dynamic range was found to be 2–150 ng/mL with the detection limit of 0.9 ng/mL. The relative standard deviation was 5.3% for three replicate measurements of methocarbamol in plasma sample. The extraction efficiency of the sorbent for the determination of different drugs with various polarities was also compared to that of Fe3O4‐polypyrrole and Fe3O4‐multiwalled carbon nanotubes sorbents. Finally, the method was used for the determination of methocarbamol in blood samples.  相似文献   
76.
In this study, a potentiometric sensor based on a pencil graphite electrode (PGE) coated with polypyrrole doped with Titan yellow dye (PPy/TY) was prepared for potentiometric determination of magnesium ion in aqueous solutions. The structural characteristics of magnesium sensor electrode (PGE/PPy/TYMg) were studied using scanning electron microscopy and Fourier transform infrared along with energy-dispersive spectroscopy. Under the optimal conditions, the electrode reveals a good Nernstian behavior with slope of 28.27 ± 0.40 mV per decade over the concentration range of 1.0 × 10?5–5.0 × 10?2 M and a detection limit of 6.28 × 10?6 M. The potentiometric response of fabricated electrode toward magnesium ion was found to be independent of the pH of the test solution in the pH range of 4.5–8.0. The electrode showed fast response time (<10 s) and good shelf lifetime (>2 months). The prepared magnesium sensor electrode can also be used as an indicator electrode in potentiometric titration of Mg2+ with EDTA with distinguished end point. The electrode revealed good selectivity with respect to many cations including alkali, alkaline earth, transition and heavy metal ions. The introduced magnesium electrode was used for measurement of Mg2+ ion in real samples without any serious interferences from other ions.  相似文献   
77.
Many tools in production technology are nowadays coated to obtain a satisfactory lifetime and degradation resistance. Therefore, the main goal of this study is to investigate antiadhesive and wear resistant coatings made of ceramics, plastics and metals produced by High Power Pulsed Magnetron Sputtering (HPPMS) technique [1]. A cohesive zone element technique (CZ) is applied to model the interactions of the coatings and the substrate surfaces (see [2]). This goes along with the investigations of the delamination and failure behavior of the involved surfaces. To illustrate the applicability of the model, several structural simulations are performed. The developed CZ element model is capable of modeling the separation, the contact and also the irreversible reloading conditions in both normal and tangential directions [3]. The model is further developed to be applicable for different structures including different bonding behaviors, with a higher stability. The talk concludes with a detailed discussion of the numerical results of different material and interface properties. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
78.
Journal of Cluster Science - In this research, we used a fast and simple method for synthesis of calcium titanate (CaTiO3) and calcium ferrite (CaFe2O4) nanostructures: microwave assisted...  相似文献   
79.
Cannabis sativa L., a low-cost, fast-growing herbaceous plant, is seeing a resurgence in widespread cultivation as a result of new policies and product drive. Its biodegradable and environmentally benign nature coupled with its high specific surface area and three-dimensional hierarchal structure makes it an excellent candidate for use as a biomass-derived carbon material for electrochemical power sources. It is proposed that this ‘wonder crop’ could have an important role in the energy transition by providing high-functioning carbon-based materials for electrochemistry. In this article, all instances of C. sativa usage in batteries, fuel cells and supercapacitors are discussed with a focus on highlighting the high capacity, rate capability, capacitance, current density and half-wave potential that can be achieved with its utilisation in the field.  相似文献   
80.
Electrochemical hydrogen storage in porous carbon materials is emerging as a cost-effective hydrogen storage and transport technology with competitive power and energy densities. The merits of electrochemical hydrogen storage using porous conductive carbon-based electrodes are reviewed. The employment of acidic electrolytes in such storage systems is compared with alkaline electrolytes. The recent innovations of a proton battery for smaller-scale electricity storage, and a proton flow reactor system for larger (grid)-scale storage and bulk export of hydrogen produced from renewable energy, are briefly described. It is argued that such systems, along with variants proposed by others, all of which rely on electrochemical hydrogen storage in porous carbons, can contribute to the search for energy storage technologies essential for the transition to a zero-emission global economy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号