首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   23篇
  国内免费   3篇
化学   216篇
晶体学   1篇
力学   4篇
数学   18篇
物理学   65篇
  2024年   2篇
  2023年   7篇
  2022年   19篇
  2021年   22篇
  2020年   13篇
  2019年   11篇
  2018年   10篇
  2017年   7篇
  2016年   24篇
  2015年   11篇
  2014年   21篇
  2013年   14篇
  2012年   12篇
  2011年   21篇
  2010年   9篇
  2009年   14篇
  2008年   4篇
  2007年   8篇
  2006年   6篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1997年   2篇
  1996年   2篇
  1995年   6篇
  1994年   2篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1986年   1篇
  1985年   3篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1972年   1篇
  1970年   1篇
  1966年   2篇
排序方式: 共有304条查询结果,搜索用时 15 毫秒
81.
Through several waves of technological research and un-matched innovation strategies, bio-catalysis has been widely used at the industrial level. Because of the value of enzymes, methods for producing value-added compounds and industrially-relevant fine chemicals through biological methods have been developed. A broad spectrum of numerous biochemical pathways is catalyzed by enzymes, including enzymes that have not been identified. However, low catalytic efficacy, low stability, inhibition by non-cognate substrates, and intolerance to the harsh reaction conditions required for some chemical processes are considered as major limitations in applied bio-catalysis. Thus, the development of green catalysts with multi-catalytic features along with higher efficacy and induced stability are important for bio-catalysis. Implementation of computational science with metabolic engineering, synthetic biology, and machine learning routes offers novel alternatives for engineering novel catalysts. Here, we describe the role of synthetic biology and metabolic engineering in catalysis. Machine learning algorithms for catalysis and the choice of an algorithm for predicting protein-ligand interactions are discussed. The importance of molecular docking in predicting binding and catalytic functions is reviewed. Finally, we describe future challenges and perspectives.  相似文献   
82.
The peptide temporin-LK1 (1) was obtained from the skin secretion of frog Limnonectes kuhlii (Ranidae). It is a unique antimicrobial peptide with 17 residues, including four L-phenylalanines and single glycine. Mass spectrometry and Edmand degradation were used for the determination of sequence of amino acids in temporin-LK 1 (1), and confirmed by cDNA cloning. We report here the synthesis and structural studies of temporin-LK1 (1) and its analogs 2–4. Peptides 24 were prepared by substitution of achiral glycine residue of temporin-LK1 (1) with D-alanine, L-phenylglycine, and L-naphthylalanine, respectively. Peptides 1–4 were evaluated against multidrug-resistant (MDR) strains of Staphylococcus aureus and Pseudomonas aeruginosa. Analog 2 was found active against all MDR strains of S. aureus and P. aeruginosa at a much lower dose than the clinically used antibiotics.  相似文献   
83.
Huang  Xinan  Jiang  Hong  Li  Yongxin  Sang  Lijia  Zhou  Huipeng  Shahzad  Sohail Anjum  Ibupoto  Zafar Hussain  Yu  Cong 《Mikrochimica acta》2017,184(7):2325-2331
Microchimica Acta - A sensitive and selective luminescent nanoprobe (referred to as DEPN) is designed for the determination of Cu(II) ions. DEPN shows two emission peaks, one at 602 nm and...  相似文献   
84.
The 16-membered modified [N6] macrocylic ligand (L), a mimic to cyclic, hexapeptide is reacted with MCl2 and MCl3 resulting in complexes with stoichiometrices [MLCl2] (M = Cr, Mn, Co, Ni, Cu), [MLCl3] (M = Pt, Pd) and [MLCl2]Cl (M = Fe, Ru). Its reactions with the precursors [M(Ph3P)2Cl2] (M = Co, Ni, Pt, Pd) follow a ligand displacement path affording the final products which do not contain coordinated Ph3P. Complexes have been characterized from results of elemental analyses, conductometric, magnetic susceptibility, i.r. and u.v.–vis (ligand field) spectral studies. Magnetic susceptibility and ligand field spectral data are consistent with a hexacoordinate geometry for Cr2+, Mn2+, Fe3+, Co2+, Ni2+ and Cu2+ and four coordinate square-planar geometry for Pt2+ and Pd2+. Molecular orbital computations using CSChem ultra MOPAC software for an optimized minimum energy plot of the structure shows that the ligand binds metal ions as a tetradentate (N,N,N,N) chelating agent. Cyclic voltammetric studies indicate formation of stable reversible or quasi-reversible redox couples in solutions, which corroborates a kinetic stability of these complexes in their variable oxidation states.  相似文献   
85.
Reactions of a 32-membered [N12] macrocyclic ligand, L.2HClO4 with metal salts MCl3 (M=Cr or Fe) and MCl2 (M=Co, Ni or Cu) have produced complexes of stoichiometries M2LCl4(ClO4)2 and M2LCl2(ClO4)2, respectively. However, reactions with [M(Ph3P)2Cl2] (M=Co or Ni) and [(η5-C5H5)Ni(Ph3P)I] follow a ligand substitution path resulting in products with stoichiometries M2LCl2(ClO4)2 and [(η5-C5H5)2Ni2L(ClO4)2], respectively. The mode of bonding and geometry of the complexes have been derived on the basis of i.r., ligand field spectral and magnetic susceptibility measurements. EPR of CuII complex shows anisotropy with , G < 4.0 and orbital reduction factor . Thermodynamic first ionic association constants (K1) and the corresponding free energy change (ΔG) of complexes in DMSO have been determined and discussed. Cyclic voltammetric studies indicate the presence of a quasi-reversible redox couples CrIII/II, CoII/I, NiII/I, NiII/III and CuII/I in solutions suggesting flexible nature of the macrocyclic cavity.  相似文献   
86.
Functionalized and sterically encumbered diaryl ethers were prepared by [3+3] cyclization of 1,3-bis(silyl enol ethers) with 2-aryloxy-3-(silyloxy)alk-2-en-1-ones.  相似文献   
87.
Cooperative dual site activation of boranes by redox-active 1,3-N,S-chelated ruthenium species, mer-[PR32-N,S-(L)}2Ru{κ1-S-(L)}], (mer-2a: R = Cy, mer-2b: R = Ph; L = NC7H4S2), generated from the aerial oxidation of borate complexes, [PR32-N,S-(L)}Ru{κ3-H,S,S′-BH2(L)2}] (transmer-1a: R = Cy, transmer-1b: R = Ph; L = NC7H4S2), has been investigated. Utilizing the rich electronic behaviour of these 1,3-N,S-chelated ruthenium species, we have established that a combination of redox-active ligands and metal–ligand cooperativity has a big influence on the multisite borane activation. For example, treatment of mer-2a–b with BH3·THF led to the isolation of fac-[PR3Ru{κ3-H,S,S′-(NH2BSBH2N)(S2C7H4)2}] (fac-3a: R = Cy and fac-3b: R = Ph) that captured boranes at both sites of the κ2-N,S-chelated ruthenacycles. The core structure of fac-3a and fac-3b consists of two five-membered ruthenacycles [RuBNCS] which are fused by one butterfly moiety [RuB2S]. Analogous fac-3c, [PPh3Ru{κ3-H,S,S′-(NH2BSBH2N)(SC5H4)2}], can also be synthesized from the reaction of BH3·THF with [PPh32-N,S-(SNC5H4)}{κ3-H,S,S′-BH2(SNH4C5)2}Ru], cisfac-1c. In stark contrast, when mer-2b was treated with BH2Mes (Mes = 2,4,6-trimethyl phenyl) it led to the formation of trans- and cis-bis(dihydroborate) complexes [{κ3-S,H,H-(NH2BMes)Ru(S2C7H4)}2], (trans-4 and cis-4). Both the complexes have two five-membered [Ru–(H)2–B–NCS] ruthenacycles with κ2-H–H coordination modes. Density functional theory (DFT) calculations suggest that the activation of boranes across the dual Ru–N site is more facile than the Ru–S one.

Redox-active ruthenium complexes supported by hemilabile κ2-N,S-chelated ruthenacycles undergo unusual dual site B–H bond activation through metal–ligand cooperation with free and bulky boranes.  相似文献   
88.
Magnetic phase evolution, crystallographic texture, microstructure and magnetic properties of Fe–28Cr–15Co–3.5Mo–1.8Ti alloy have been investigated by X-ray diffractometry, scanning transmission electron microscopy and magnetometry techniques as a function of processing conditions. Heat treatment conditions for obtaining optimum textural, microstructural and magnetic properties have been established by the experimentations. The Goss {110}〈001〉 and cube type {001}〈010〉 textures have been developed in an optimal treated Fe–28Cr–15Co–3.5Mo–1.8Ti magnets. The coercive force in Fe–28Cr–15Co–3.5Mo–1.8Ti magnets depends critically on the shape anisotropy of rod-like Fe Co Ti-rich α1 particles and remanence on the alignment and elongation of α1 particles parallel to applied magnetic field 〈100〉 directions. The optimum magnetic properties obtained in Fe–28Cr–15Co–3.5Mo–1.8Ti alloy are intrinsic coercive force, iHc, of 78.8 kA/m (990 Oe), remanence, Br of 1.12 T (11.2 kG) and energy product, (BH)max of 52.5 kJ/m3 (6.5 MGOe). The development of Fe–28Cr–15Co–3.5Mo–1.8Ti magnets as well as characterization of texture, microstructural and magnetic properties in the current study would be helpful in designing the new Fe–Cr–Co–Mo based magnets suitable for scientific and technological applications.  相似文献   
89.
This study describes sensitive determination of atropine using glassy carbon electrodes (GCE) modified with Co3O4 nanostructures. The as-synthesised nanostructures were grown using cysteine (CYS), glutathione (GSH) and histidine (HYS) as effective templates under hydrothermal action. The obtained morphologies revealed interesting structural features, including both cavity-based and flower-shaped structures. The as-synthesised morphologies were noted to actively participate in electro-catalysis of atropine (AT) drug where GSH-assisted structures exhibited the best signal response in terms of current density and over-potential value. The study also discusses the influence of functional groups on the signal sensitivity of atropine electro-oxidation. The functionalisation was carried with the amino acids originally used as effective templates for the growth of Co3O4 nanostructures. The highest increment was obtained when GSH was used as the surface functionalising agent. The GSH-functionalised Co3O4-modified electrode was utilised for the electro-chemical sensing of AT in a concentration range of 0.01–0.46 μM. The developed sensor exhibited excellent working linearity (R2 = 0.999) and signal sensitivity up to 0.001 μM of AT. The noted high sensitivity of the sensor is associated with the synergy of superb surface architectures and favourable interaction facilitating the electron transfer kinetics for the electro-catalytic oxidation of AT. Significantly, the developed sensor demonstrated excellent working capability when used for AT detection in human urine samples with strong anti-interference potential against common co-existing species, such as glucose, fructose, cysteine, uric acid, dopamine and ascorbic acid.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号