首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   513篇
  免费   9篇
化学   405篇
晶体学   8篇
力学   11篇
数学   21篇
物理学   77篇
  2022年   4篇
  2021年   3篇
  2020年   9篇
  2019年   4篇
  2018年   5篇
  2017年   3篇
  2016年   9篇
  2015年   4篇
  2014年   8篇
  2013年   25篇
  2012年   28篇
  2011年   36篇
  2010年   13篇
  2009年   18篇
  2008年   23篇
  2007年   33篇
  2006年   29篇
  2005年   20篇
  2004年   17篇
  2003年   18篇
  2002年   21篇
  2001年   10篇
  2000年   9篇
  1999年   8篇
  1998年   3篇
  1997年   9篇
  1996年   3篇
  1995年   3篇
  1994年   8篇
  1993年   10篇
  1992年   8篇
  1991年   9篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   6篇
  1986年   4篇
  1985年   5篇
  1984年   10篇
  1983年   4篇
  1982年   3篇
  1981年   6篇
  1979年   7篇
  1978年   7篇
  1977年   4篇
  1976年   5篇
  1974年   5篇
  1973年   3篇
  1972年   4篇
  1971年   3篇
排序方式: 共有522条查询结果,搜索用时 15 毫秒
51.
The reactivity of 2-alkylidene-4-oxothiazolidine S-oxides under the Pummerer reaction conditions, using Ac2O, TFAA, SOCl2 and SOBr2 as initiators, has been examined. Almost all reactions proceeded with absolute regioselectivity yielding α-substituted sulfides or vinyl-chloro derivatives. The mechanism for the formation of the latter products was postulated and proved experimentally.  相似文献   
52.
A potential model complex for the hydrogenase active site, [Fe(2){(μ-CH(2)S)(2)R}(CO)(6)] (1) (R = quinoxaline), was synthesized by condensation of [(μ-LiS)(2)Fe(2)(CO)(6)] with 2,3-bis(bromomethyl)quinoxaline. Reactions of 1 with bis(diphenylphosphino)methane (dppm) under a range of conditions yielded substituted complexes [Fe(2){(μ-CH(2)S)(2)R}(CO)(5)(dppm)] (2), [Fe(2){(μ-CH(2)S)(2)R}(CO)(4)(k(2)-dppm)] (3) and [Fe(2){(μ-CH(2)S)(2)R}(CO)(4)(μ-dppm)] (4). X-ray crystallography confirms that in 2, the dppm is terminally bonded to an iron atom via one phosphorus atom, whereas in 3, it acts as a chelating ligand to coordinate to an iron center in a dibasal-substituted manner. In 4, the dppm bridges the two iron atoms in a cis basal/basal fashion with one phosphorus bonded to each iron atom. Treatment of 1 with various tertiary phosphines at room temperature in acetonitrile (MeCN) generates a range of mono-substituted products [Fe(2){(μ-CH(2)S)(2)R}(CO)(5)L] (5, L = PEt(3); 6, PMe(3); 7, PPh(3); 8, Me(2)PPh). With Bu(t)NC, mono- and di-substituted [Fe(2){(μ-CH(2)S)(2)R}(CO)(5)(Bu(t)NC)] (9) and [Fe(2){(μ-CH(2)S)(2)R}(CO)(4)(Bu(t)NC)(2)] (10) complexes are generated. All the complexes were characterized by elemental analysis, IR, MS and NMR spectroscopy. IR and NMR spectroscopic studies suggest that addition of excess HBF(4)·OEt(2) acid to 1-4 led to the protonation of quinoxaline nitrogen atoms. In contrast, 5-10 were not stable in acidic media. Electrochemistry of 1-4 was investigated in the acetonitrile medium (0.1 M Bu(4)NPF(6)). The electrochemical instability of the reduced ligand, quinoxaline, and the reduced forms of these complexes revealed from the electrochemical studies suggests that they do not provide ideal models of the hydrogenase active site.  相似文献   
53.
The Poisson‐Boltzmann equation is an important tool in modeling solvent in biomolecular systems. In this article, we focus on numerical approximations to the electrostatic potential expressed in the regularized linear Poisson‐Boltzmann equation. We expose the flux directly through a first‐order system form of the equation. Using this formulation, we propose a system that yields a tractable least‐squares finite element formulation and establish theory to support this approach. The least‐squares finite element approximation naturally provides an a posteriori error estimator and we present numerical evidence in support of the method. The computational results highlight optimality in the case of adaptive mesh refinement for a variety of molecular configurations. In particular, we show promising performance for the Born ion, Fasciculin 1, methanol, and a dipole, which highlights robustness of our approach. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   
54.
A generic method for the synthesis of metal-7,7,8,8-tetracyanoquinodimethane (TCNQ) charge-transfer complexes on both conducting and nonconducting substrates is achieved by photoexcitation of TCNQ in acetonitrile in the presence of a sacrificial electron donor and the relevant metal cation. The photochemical reaction leads to reduction of TCNQ to the TCNQ(-) monoanion. In the presence of M(x+)(MeCN), reaction with TCNQ(-)(MeCN) leads to deposition of M(x+)[TCNQ]x crystals onto a solid substrate with morphologies that are dependent on the metal cation. Thus, CuTCNQ phase I photocrystallizes as uniform microrods, KTCNQ as microrods with a random size distribution, AgTCNQ as very long nanowires up to 30 mum in length and with diameters of less than 180 nm, and Co[TCNQ](2)(H(2)O)(2) as nanorods and wires. The described charge-transfer complexes have been characterized by optical and scanning electron microscopy and IR and Raman spectroscopy. The CuTCNQ and AgTCNQ complexes are of particular interest for use in memory storage and switching devices. In principle, this simple technique can be employed to generate all classes of metal-TCNQ complexes and opens up the possibility to pattern them in a controlled manner on any type of substrate.  相似文献   
55.
56.
57.
58.
A comparison of the electrochemical properties of a series of dinuclear complexes [M(2)(L)(RCO(2))(2)](+) with M = Mn or Co, L = 2,6-bis(N,N-bis-(2-pyridylmethyl)-sulfonamido)-4-methylphenolato (bpsmp(-)) or 2,6-bis(N,N-bis(2-pyridylmethyl)aminomethyl)-4-tert-butylphenolato (bpbp(-)) and R = H, CH(3), CF(3) or 3,4-dimethoxybenzoate demonstrates: (i) The electron-withdrawing sulfonyl groups in the backbone of bpsmp(-) stabilize the [M(2)(bpsmp)(RCO(2))(2)](+) complexes in their M(II)(2) oxidation state compared to their [M(2)(bpbp)(RCO(2))(2)](+) analogues. Manganese complexes are stabilised by approximately 550 mV and cobalt complexes by 650 mV. (ii) The auxiliary bridging carboxylato ligands further attenuate the metal-based redox chemistry. Substitution of two acetato for two trifluoroacetato ligands shifts redox couples by 300-400 mV. Within the working potential window, reversible or quasi-reversible M(II)M(III)? M(II)(2) processes range from 0.31 to 1.41 V for the [Co(2)(L)(RCO(2))(2)](+/2+) complexes and from 0.54 to 1.41 V for the [Mn(2)(L)(RCO(2))(2)](+/2+) complexes versus Ag/AgCl for E(M(II)M(III)/M(II)(2)). The extreme limits are defined by the complexes [M(2)(bpbp)(CH(3)CO(2))(2)](+) and [M(2)(bpsmp)(CF(3)CO(2))(2)](+) for both metal ions. Thus, tuning the ligand field in these dinuclear complexes makes possible a range of around 0.9 V and 1.49 V for the one-electron E(M(II)M(III)/M(II)(2)) couple of the Mn and Co complexes, respectively. The second one-electron process, M(II)M(III)? M(III)(2) was also observed in some cases. The lowest potential recorded for the E°(M(III)(2)/M(II)M(III)) couple was 0.63 V for [Co(2)(bpbp)(CH(3)CO(2))(2)](2+) and the highest measurable potential was 2.23 V versus Ag/AgCl for [Co(2)(bpsmp)(CF(3)CO(2))(2)](2+).  相似文献   
59.
The reaction of YbI(2) with KTp(Me2) gives (Tp(Me2))YbI(THF)(2) (1-Yb) as a thermally unstable product. Use of the more hindered KTp(tBu,Me) gave (Tp(tBu,Me))LnI(THF)(n) (Ln = Sm, n = 2, 2-Sm; Ln = Yb, n = 1, 2-Yb). The crystal structures of both these compounds are reported. Adducts with neutral ligands such as pyridines and isonitriles can be prepared and the crystal structures of [(Tp(tBu,Me))YbIL(n)] (L = CN(t)Bu, n = 1; L = 3,5-lutidine, n = 2) are described. 2-Sm can be oxidized using AgBPh(4) to give [(Tp(tBu,Me))SmI(THF)(2)]BPh(4). Compounds 2-Sm and 2-Yb are useful starting materials for the preparation of heteroleptic compounds by metathesis with appropriate potassium reagents. The preparations and characterization of the hydrocarbyls (Tp(tBu,Me))Ln{CH(SiMe(3))(2)} (Ln = Sm, 5-Sm; Yb, 5-Yb) and [(Tp(tBu,Me))Ln{CH(2)(SiMe(3))}(THF)] (Ln = Yb, 6a-Yb) and the triethylborohydrides [(Tp(tBu,Me))Ln(HBEt(3))(THF)(n)] (Ln = Sm, n = 0, 7-Sm; Yb, n = 1, 7-Yb) are reported, as well as the crystal structures of 5-Sm and 5-Yb, and the THF adducts 6a-Yb and [(Tp(tBu,Me))Sm{CH(SiMe(3))(2)}(THF)], 5a-Sm.  相似文献   
60.
The reaction of [Fe(II)(BF(4))(2)]·6H(2)O with the nitroxide radical, 4,4-dimethyl-2,2-di(2-pyridyl) oxazolidine-N-oxide (L(?)), produces the mononuclear transition metal complex [Fe(II)(L(?))(2)](BF(4))(2) (1) which has been investigated using temperature dependent susceptibility, Mo?ssbauer spectroscopy, electrochemistry, density functional theory (DFT) calculations, and X-ray structure analysis. Single crystal X-ray diffraction analysis and Mo?ssbauer measurements reveal an octahedral low spin Fe(2+) environment where the pyridyl donors from L(?) coordinate equatorially while the oxygen containing the radical from L(?) coordinates axially forming a linear O(?)··Fe(II)··O(?) arrangement. Magnetic susceptibility measurements show a strong radical-radical intramolecular antiferromagnetic interaction mediated by the diamagnetic Fe(2+) center. This is supported by DFT calculations which show a mutual spatial overlap of 0.24 and a spin density population analysis which highlights the antiparallel spin alignment between the two ligands. Similarly the monocationic complex [Fe(III)(L(-))(2)](BPh(4))·0.5H(2)O (2) has been fully characterized with Fe-ligand and N-O bond length changes in the X-ray structure analysis, magnetic measurements revealing a Curie-like S = 1/2 ground state, electron paramagnetic resonance (EPR) spectra, DFT calculations, and electrochemistry measurements all consistent with assignment of Fe in the (III) state and both ligands in the L(-) form. 2 is formed by a rare, reductively induced oxidation of the Fe center, and all physical data are self-consistent. The electrochemical studies were undertaken for both 1 and 2, thus allowing common Fe-ligand redox intermediates to be identified and the results interpreted in terms of square reaction schemes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号