首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   409篇
  免费   27篇
  国内免费   53篇
化学   308篇
晶体学   3篇
力学   16篇
综合类   18篇
数学   45篇
物理学   99篇
  2024年   2篇
  2023年   6篇
  2022年   18篇
  2021年   30篇
  2020年   21篇
  2019年   15篇
  2018年   9篇
  2017年   16篇
  2016年   17篇
  2015年   12篇
  2014年   18篇
  2013年   11篇
  2012年   24篇
  2011年   20篇
  2010年   14篇
  2009年   22篇
  2008年   23篇
  2007年   28篇
  2006年   17篇
  2005年   17篇
  2004年   18篇
  2003年   9篇
  2002年   14篇
  2001年   12篇
  2000年   9篇
  1999年   13篇
  1998年   9篇
  1997年   6篇
  1996年   8篇
  1995年   10篇
  1994年   6篇
  1993年   10篇
  1992年   4篇
  1991年   6篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   6篇
  1985年   1篇
  1983年   1篇
排序方式: 共有489条查询结果,搜索用时 15 毫秒
461.
The role of adenine (A) derivatives in DNA damage is scarcely studied due to the low electron affinity of base A. Experimental studies demonstrate that low‐energy electron (LEE) attachment to adenine derivatives complexed with amino acids induces barrier‐free proton transfer producing the neutral N7‐hydrogenated adenine radicals rather than conventional anionic species. To explore possible DNA lesions at the A sites under physiological conditions, probable bond ruptures in two models—N7‐hydrogenated 2′‐deoxyadenosine‐3′‐monophosphate (3′‐dA(N7H)MPH) and 2′‐deoxyadenosine‐5′‐monophosphate (5′‐dA(N7H)MPH), without and with LEE attachment—are studied by DFT. In the neutral cases, DNA backbone breakage and base release resulting from C3′?O3′ and N9?C1′ bond ruptures, respectively, by an intramolecular hydrogen‐transfer mechanism are impossible due to the ultrahigh activation energies. On LEE attachment, the respective C3′?O3′ and N9?C1′ bond ruptures in [3′‐dA(N7H)MPH]? and [5′‐dA(N7H)MPH]? anions via a pathway of intramolecular proton transfer (PT) from the C2′ site of 2′‐deoxyribose to the C8 atom of the base moiety become effective, and this indicates that substantial DNA backbone breaks and base release can occur at non‐3′‐end A sites and the 3′‐end A site of a single‐stranded DNA in the physiological environment, respectively. In particular, compared to the results of previous theoretical studies, not only are the electron affinities of 3′‐dA(N7H)MPH and 5′‐dA(N7H)MPH comparable to those of hydrogenated pyrimidine derivatives, but also the lowest energy requirements for the C3′?O3′ and N9‐glycosidic bond ruptures in [3′‐dA(N7H)MPH]? and [5′‐dA(N7H)MPH]? anions, respectively, are comparable to those for the C3′?O3′ and N1‐glycosidic bond cleavages in corresponding anionic hydrogenated pyrimidine derivatives. Thus, it can be concluded that the role of adenine derivatives in single‐stranded DNA damage is equally important to that of pyrimidine derivatives in an irradiated cellular environment.  相似文献   
462.
Polystyrene microlatexes have been prepared by conventional emulsion polymerization with a novel amphiphilic water‐soluble ABA triblock copolymer, poly[2‐(dimethylamino)ethyl methacrylate]15b‐poly(propylene oxide)36b‐poly[2‐(dimethyl‐amino)ethyl methacrylate]15 (PDMAEMA15‐PPO36‐PDMAEMA15), as a polycationic emulsifier under acidic or neutral conditions. The ABA triblock copolymer was developed by oxyanion‐initiated polymerization in our laboratory. In this study, it acted well both as a polycationic polymeric surfactant to form block copolymeric micelles for emulsion polymerization and as a stabilizer to be anchored into the polystyrene microlatex or adsorbed onto its surface. The results obtained with various copolymer concentrations and different pH media showed that microlatex diameters decreased remarkably with increased concentration of this ABA triblock copolymeric emulsifier, but were not as much affected by the pH of media within the experimental range of 3.4–7.0. The observed difference of the particle sizes from transmission electron microscopy and dynamic light scattering measurements is discussed in terms of the effect of the absorbed surfactants and their electrical double layers. This difference has led to the formation of a cationic polyelectrolyte fringe on the surface of microspheres. The final microlatexes were characterized with respect to total conversion, particle diameter, and particle size distribution as well as colloidal stability. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3734–3742, 2002  相似文献   
463.
氧化还原催化剂是燃料电池和金属空气电池中影响其阴极性能的关键因素. 采用溶剂热/水热法,以氧化石墨烯(GO),MnSO4和KMnO4为原料可控制备了两种锰氧化物(MnOx)和还原氧化石墨烯(rGO)复合材料(Mn3O4@rGO,MnOOH@rGO)并研究了其氧还原电催化性能. 通过X射线粉末衍射(XRD)、拉曼光谱(Raman)、扫描电镜(SEM)、热重(TG)等分析测试手段表征了Mn3O4@rGO与MnOOH@rGO的组成结构及形貌. 结果显示,在制备过程中GO被还原为rGO,乙醇和水溶剂中分别形成Mn3O4纳米颗粒与MnOOH纳米棒,MnOx均匀生长在rGO表面. 采用伏安曲线和旋转圆-环盘电极技术测试了所制备复合材料的电化学性能,并与无rGO负载的Mn3O4和MnOOH进行对比. 结果表明,由于MnOOH和rGO的协同作用,MnOOH@rGO在碱性体系中表现出较好的催化活性及稳定性,可作为潜在的氧还原催化剂.  相似文献   
464.
In this paper, we investigate the blow-up rate of solutions of diffusion equations with nonlocal nonlinear reaction terms. For large classes of equations, we prove that the solutions have global blow-up and that the rate of blow-up is uniform in all compact subsets of the domain. In each case, the blow-up rate of |u(t)||u(t)| is precisely determined.  相似文献   
465.
Given a compact closed four-dimensional smooth Riemannian manifold, we prove existence of extremal functions for Moser-Trudinger type inequality. The method used is blow-up analysis combined with capacity techniques. Acknowledgements and Notes. The second author has been supported by M.U.R.S.T. within the PRIN 2004 Variational methods and nonlinear differential equations.  相似文献   
466.
The mechanism of the fidelity synthesis of DNA associated with the process of dGTP combination to the DNA template was explored. The exclusion of water molecules from the hydrated DNA bases can amplify the energy difference between the correct and incorrect base pairs, but the effect of the water molecules on the Gibbs free energy of formation is dependent on the binding sites for the water molecules. The water detachment from the incoming dNTP is not the only factor but the first step for the successful replication of DNA. The second step is the selection of the DNA polymerase on the DNA base pair through the comparison between the correct DNA base and the incorrect DNA base. The bonding of the Arg668 with the incoming dNTP can enlarge the Gibbs free energies of formation of the base pairs, especially the correct base pairs, thus increasing the driving force of DNA formation. When the DNA base of the primer terminus is correct, the extension of the guanine and the adenine is quicker than that of the cytosine and the thymine because of the hydrogen bonding fork formation of Arg668 with the minor groove of the primer terminus and the ring oxygen of the deoxyribose moiety of the incoming dNTP. Because of the geometry differences of the incorrect base pairs with the correct base pairs, the effect from the DNA polymerase is smaller on the incorrect base pair than on the correct base pair, and the extension of a mispair is slower than that of a correct base pair. This decreases the extension rate of the base pair and thus allows proofreading exonuclease activity to excise the incorrect base pair. Arg668 cannot prevent the extension of the GT mispair, as well as the GC correct base pair, and GA and GG mispairs. This may be attributed to the small geometry difference between the GT base pair and the correct AT base pair.  相似文献   
467.
The major objective of this paper is to address a controversial binding sequence between nucleic acid bases (NABs) and C(60) by investigating adsorptions of NABs and their cations on C(60) fullerene with a variety of density functional theories including two novel hybrid meta-GGA functionals, M05-2x and M06-2x, as well as a dispersion-corrected density functional, PBE-D. The M05-2x/6-311++G** provides the same binding sequence as previously reported, guanine(G) > cytosine(C) > adenine (A) > thymine (T); however, M06-2x switches the binding strengths of A and C, and PBE-D eventually results in the following sequence, G>A>T>C, which is the same as the widely accepted hierarchy for the stacking of NABs on other carbon nanomaterials such as single-walled carbon nanotube and graphite. The results indicate that the questionable relative binding strength is due to insufficient electron correlation treatment with the M05-2x or even the M06-2x method. The binding energy of G@C(60) obtained with the M06-2x/6-311++G(d,p) and the PBE-D/cc-pVDZ is -7.10 and -8.07 kcal/mol, respectively, and the latter is only slightly weaker than that predicted by the MP2/6-31G(d,p) (-8.10kca/mol). Thus, the PDE-D performs better than the M06-2x for the observed NAB@C(60) π-stacked complexes. To discuss whether C(60) could prevent NABs from radiation-induced damage, ionization potentials of NABs and C(60), and frontier molecular orbitals of the complexes NABs@C(60) and (NABs@C(60))(+) are also extensively investigated. These results revealed that when an electron escapes from the complexes, a hole was preferentially created in C(60) for T and C complexes, while for G and A the hole delocalizes over the entire complex, rather than a localization on the C(60) moiety. The interesting finding might open a new strategy for protecting DNA from radiation-induced damage and offer a new idea for designing C(60)-based antiradiation drugs.  相似文献   
468.
Density functional theory calculations were employed to study the stabilization process of the guanine radical cation through amino acid interactions as well as to understand the protection mechanisms. On the basis of our calculations, several protection mechanisms are proposed in this work subject to the type of the amino acid. Our results indicate that a series of three‐electron bonds can be formed between the amino acids and the guanine radical cation which may serve as relay stations supporting hole transport. In the three‐electron‐bonded, π–π‐stacked, and H‐bonded modes, amino acids can protect guanine from oxidation or radiation damage by sharing the hole, while amino acids with reducing properties can repair the guanine radical cation through proton‐coupled electron transfer or electron transfer. Another important finding is that positively charged amino acids (ArgH+, LysH+, and HisH+) can inhibit ionization of guanine through raising its ionization potential. In this situation, a negative dissociation energy for hydrogen bonds in the hole‐trapped and positively charged amino acid–Guanine dimer is observed, which explains the low hole‐trapping efficiency. We hope that this work provides valuable information on how to protect DNA from oxidation‐ or radiation‐induced damages in biological systems.  相似文献   
469.
An orthogonal magnetic field vertical to the light propagating direction will initiate a nonreciprocal phase drift in a depolarized interferometric fiber-optic gyroscope (D-IFOG). This drift appears a linear correlation to the magnitude of the orthogonal magnetic field. We proposed a software-compensation method by attaching two differential Hall sensors to the D-IFOG to sample the magnetic field in real time and the experimental results showed a notable improvement to the magnetic stability.  相似文献   
470.
Due to the fact that natural DNA may lack sufficient conductance for direct application in molecular electronics, a novel design of outer‐expanded purine analogues was proposed by incorporating an aromatic ring at the N7‐C8 site into natural G and A bases from the outside. The effect of the outer‐expansion modification on electronic properties of DNA was investigated by density functional theory and molecular dynamics. The analyses revealed that these purine analogues not only preserve the same sizes of natural purine bases, thus avoiding distortions of DNA skeleton induced by the normal ring‐inner‐expansion modification, but also keep the selectivity of pairing with their natural counterpart C and T bases. More importantly, their electronic properties are enhanced, indicated by the narrowed HOMO–LUMO gaps, the lowered ionization potentials and the improved ultraviolet absorption spectra. This work may provide helpful information for designing of artificial bases as promising building blocks of biomolecular nanowires. © 2014 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号