首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   6篇
  国内免费   1篇
化学   104篇
晶体学   2篇
力学   1篇
综合类   1篇
数学   9篇
物理学   64篇
  2022年   3篇
  2021年   5篇
  2020年   1篇
  2019年   4篇
  2018年   6篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   12篇
  2012年   11篇
  2011年   11篇
  2010年   5篇
  2009年   8篇
  2008年   12篇
  2007年   8篇
  2006年   11篇
  2005年   8篇
  2004年   3篇
  2003年   8篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   6篇
  1990年   2篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
排序方式: 共有181条查询结果,搜索用时 15 毫秒
1.
2.
We present a mode locking (ML) phenomenon of vortex matter observed around the peak effect regime of 2H-NbSe2 pure single crystals. The ML features allow us not only to trace how the shear rigidity of driven vortices persists on approaching the second critical field, but also to demonstrate a dynamic melting transition of driven vortices at a given velocity. We observe the velocity dependent melting signatures in the peak effect regime, which reveal a crossover between the disorder-induced transition at small velocity and the thermally induced transition at large velocity. This uncovers the relationship between the peak effect and the thermal melting.  相似文献   
3.
4.
5.
The morphology of a glass surface having a transparent coating processed with focused femtosecond laser pulses is investigated. The transparent coating is formed of poly-methyl methacrylate (PMMA). When the glass was coated with a PMMA film with a thickness of 2.8 μm, bumps were formed over a wide range of axial focus positions. The same laser pulse energy produced cavities when processing bare glass with no coating. The bumps were formed as a result of suppressing material emission from the glass surface by a shielding effect of plasma generated by ablation of the PMMA film and by physical blocking of the PMMA film. A thinner film with a thickness of 0.7 μm produced a reduced shielding effect, forming an exploded bump with a small pit at its center and debris around the periphery. PACS 44.10.+i; 61.80.Ba; 79.20.Ds  相似文献   
6.
Doping transition metal cation is known to enhance the electronic conduction of solid electrolytes, however, the ionic conduction can also be improved by those dopants. In this investigation, the oxide ion conductivity of LaGaO3 based oxide doped with transition metal cations such as Fe, Co, Ni, Mn, and Cu for the Ga site was studied. It was found that doping Co or Fe is effective for enhancing the oxide ion conductivity. The improved oxide ion conductivity may be induced by the improved mobility of oxide ion. Among examined transition metal cations, cobalt is the most adequate cation as a dopant for the Ga site of LSGM. Considering the conductivity and the transport number, the optimized composition is found to be La0.8Sr0.2Ga0.8Mg0.115Co0.085O3. In this work, application of Co2+ doped LSGM as the electrolyte of internally reformed fuel cells was also investigated. Improvement in oxide ion conductivity is effective for enhancing the power generation characteristics. Paper presented at the 4th Euroconference on Solid State Ionics, Renvyle, Galway, Ireland, Sept. 13–19, 1997  相似文献   
7.
The effects of NO and NO2 produced by using a plasma jet (PJ) of a N2/O2 mixture on ignition of hydrogen, methane, and ethylene in a supersonic airflow were experimentally and numerically investigated. Numerical analysis of ignition delay time showed that the addition of a small amount of NO or NO2 drastically reduced ignition delay times of hydrogen and hydrocarbon fuels at a relatively low initial temperature. In particular, NO and NO2 were more effective than O radicals for ignition of a CH4/air mixture at 1200 K or lower. These ignition enhancement effects were examined by including the low temperature chemistry. Ignition tests by a N2/O2 PJ in a supersonic flow (M = 1.7) for using hydrogen, methane, and ethylene injected downstream of the PJ were conducted. The results showed that the ignitability of the N2/O2 PJ is affected by the composition of the feedstock and that pure O2 is not the optimum condition for downstream fuel injection. This result of ignition tests with downstream fuel injection demonstrated a significant difference in ignition characteristics of the PJ from the ignition tests with upstream fuel injection.  相似文献   
8.
A synthesis of molybdenum incorporated mesoporous aluminophosphate with long-chain n-alkylamine as template material had been prepared under non-aqueous condition. These materials were extensively characterized by using X-ray diffraction (XRD), nitrogen sorption isotherms, nuclear magnetic resonance of 27Al and 31P (NMR), inductive coupled plasma (ICP), electron spin resonance (ESR), Fourier transform infrared (FTIR) and thermogravimetric-differential thermal analysis (TG-DTA). Morphology of the materials had been observed by using transmission electron microscope (TEM) that revealed the mesoporous materials possessed wormhole-like structures. Alkaline solvent extraction using n-butylamine/ethanol had been efficiently removed the n-alkylamine from the mesoporous samples which yielded BET surface areas around 550-730 m2/g. BJH analysis showed a narrow pore size distribution which increased with increasing of the carbon chain length of alkylamine (template). Valence state and coordination of the molybdenum in the obtained samples were investigated by using ESR and FTIR where it was found that Mo4+ and Mo6+ molybdenum species existed in the molybdenum incorporated mesoporous aluminophosphate in tetrahedral coordination.  相似文献   
9.
New protocols for controlled reduction of carboxamides to either alcohols or amines were established using a combination of sodium hydride (NaH) and zinc halides (ZnX2). Use of a different halide on ZnX2 dictates the selectivity, wherein the NaH‐ZnI2 system delivers alcohols and NaH‐ZnCl2 gives amines. Extensive mechanistic studies by experimental and theoretical approaches imply that polymeric zinc hydride (ZnH2) is responsible for alcohol formation, whereas dimeric zinc chloride hydride (H?Zn?Cl)2 is the key species for the production of amines.  相似文献   
10.
The mechanism underlying the bioinertness of the self-assembled monolayers of oligo(ethylene glycol)-terminated alkanethiol (OEG-SAM) was investigated with protein adsorption experiments, platelet adhesion tests, and surface force measurements with an atomic force microscope (AFM). In this work, we performed systematic analysis with SAMs having various terminal groups (-OEG, -OH, -COOH, -NH(2), and -CH(3)). The results of the protein adsorption experiment by the quartz crystal microbalance (QCM) method suggested that having one EG unit and the neutrality of total charges of the terminal groups are essential for protein-resistance. In particular, QCM with energy dissipation analyses indicated that proteins absorb onto the OEG-SAM via a very weak interaction compared with other SAMs. Contrary to the protein resistance, at least three EG units as well as the charge neutrality of the SAM are found to be required for anti-platelet adhesion. When the identical SAMs were formed on both AFM probe and substrate, our force measurements revealed that only the OEG-SAMs possessing more than two EG units showed strong repulsion in the range of 4 to 6 nm. In addition, we found that the SAMs with other terminal groups did not exhibit such repulsion. The repulsion between OEG-SAMs was always observed independent of solution conditions [NaCl concentration (between 0 and 1 M) and pH (between 3 and 11)] and was not observed in solution mixed with ethanol, which disrupts the three-dimensional network of the water molecules. We therefore concluded that the repulsion originated from structured interfacial water molecules. Considering the correlation between the above results, we propose that the layer of the structured interfacial water with a thickness of 2 to 3 nm (half of the range of the repulsion observed in the surface force measurements) plays an important role in deterring proteins and platelets from adsorption or adhesion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号