首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13160篇
  免费   1207篇
  国内免费   1165篇
化学   10269篇
晶体学   172篇
力学   469篇
综合类   91篇
数学   1204篇
物理学   3327篇
  2024年   20篇
  2023年   113篇
  2022年   290篇
  2021年   364篇
  2020年   351篇
  2019年   363篇
  2018年   296篇
  2017年   314篇
  2016年   533篇
  2015年   542篇
  2014年   661篇
  2013年   866篇
  2012年   1136篇
  2011年   1228篇
  2010年   798篇
  2009年   724篇
  2008年   955篇
  2007年   819篇
  2006年   780篇
  2005年   714篇
  2004年   566篇
  2003年   500篇
  2002年   529篇
  2001年   355篇
  2000年   289篇
  1999年   256篇
  1998年   171篇
  1997年   126篇
  1996年   108篇
  1995年   106篇
  1994年   88篇
  1993年   89篇
  1992年   69篇
  1991年   65篇
  1990年   57篇
  1989年   40篇
  1988年   32篇
  1987年   28篇
  1986年   33篇
  1985年   29篇
  1984年   14篇
  1983年   16篇
  1982年   17篇
  1981年   10篇
  1980年   11篇
  1979年   9篇
  1978年   7篇
  1976年   7篇
  1975年   8篇
  1974年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
63.
64.
65.
66.
67.
The Diels-Alder reaction between anthracene and tetracyanoethylene in acetonitrile does not reach a steady-state during the first half-life. The reaction follows the reversible consecutive second-order mechanism accompanied by the formation of a kinetically significant intermediate. The experimental observations consistent with this mechanism include extent of reaction-time profiles which deviate markedly from those expected for the irreversible second-order mechanism and initial pseudo first-order rate constants which differ significantly from those measured at longer times. It is concluded that the reaction intermediate giving rise to these deviations cannot be the charge-transfer (CT) complex, which is formed during the time of mixing, but rather a more intimate complex with a geometry favorable to the formation of the Diels-Alder adduct. The kinetics of the reaction were resolved into the microscopic rate constants for the individual steps. The rate constants, as shown in equation 1, at 293 K were observed to be 5.46 M(-)(1) s(-)(1) (k(f)), 14.8 s(-)(1) (k(b)), and 12.4 s(-)(1) (k(p)). Concentration profiles calculated under all conditions show that intermediate concentrations increase to maximum values early in the reaction and then continually decay during the first half-life. It is concluded that the charge-transfer complex may be an intermediate preceding the formation of the reactant complex, but due to its rapid formation and dissociation it is not detected by the kinetic measurements.  相似文献   
68.
In this study, the thermal properties of bio-flour-filled, polypropylene (PP) bio-composites with different pozzolan contents were investigated. With increasing pozzolan content, the thermal stability, 5% mass loss temperature and derivative thermogravimetric curve (DTGmax) temperatures of the bio-composites slightly increased. The coefficient of thermal expansion (CTE) and thermal expansion of the bio-composites decreased as the pozzolan content increased. The glass transition temperature (T g), melting temperature (T m) and percentage of crystallinity (X c) of the bio-composites were not significantly changed. The thermal stability, thermal expansion and X c of the maleic anhydride-grafted PP (MAPP)-treated bio-composites were much higher than those of non-treated bio-composites at 1% pozzolan content due to enhanced interfacial adhesion. X-ray diffraction (XRD) analysis confirmed the crystallinity of pozzolan-added bio-composites. From these results, we concluded that the addition of pozzolan in the bio-composites was an effective method for enhancing the thermal stability and thermal expansion.  相似文献   
69.
The vibration spectrum and FAB mass spectrum of (+/-)-1-[3-(2-methoxyphenoxy)-2-hydroxypropyl]-4-[(2,6-dimethylphenyl)aminocarbonylmethyl]piperazine dihydrochloride salt was studied. By comparing with the spectra of free base, different bands of IR were found in the NH+ stretching, the NH+ deformation motion, the CH2 of NCH2 group symmetric stretching, the CH2 of N-CH2 group twisting and the CN stretching. FAB shows the basic peak is M + H. Other m/e peaks are consistent with the structure.  相似文献   
70.
Precision medicine has been strongly promoted in recent years. It is used in clinical management for classifying diseases at the molecular level and for selecting the most appropriate drugs or treatments to maximize efficacy and minimize adverse effects. In precision medicine, an in-depth molecular understanding of diseases is of great importance. Therefore, in the last few years, much attention has been given to translating data generated at the molecular level into clinically relevant information. However, current developments in this field lack orderly implementation. For example, high-quality chemical research is not well integrated into clinical practice, especially in the early phase, leading to a lack of understanding in the clinic of the chemistry underlying diseases. In recent years, mass spectrometry (MS) has enabled significant innovations and advances in chemical research. As reported, this technique has shown promise in chemical mapping and profiling for answering “what”, “where”, “how many” and “whose” chemicals underlie the clinical phenotypes, which are assessed by biochemical profiling, MS imaging, molecular targeting and probing, biomarker grading disease classification, etc. These features can potentially enhance the precision of disease diagnosis, monitoring and treatment and thus further transform medicine. For instance, comprehensive MS-based biochemical profiling of ovarian tumors was performed, and the results revealed a number of molecular insights into the pathways and processes that drive ovarian cancer biology and the ways that these pathways are altered in correspondence with clinical phenotypes. Another study demonstrated that quantitative biomarker mapping can be predictive of responses to immunotherapy and of survival in the supposedly homogeneous group of breast cancer patients, allowing for stratification of patients. In this context, our article attempts to provide an overview of MS-based chemical mapping and profiling, and a perspective on their clinical utility to improve the molecular understanding of diseases for advancing precision medicine.

An overview of MS-based chemical mapping and profiling, indicating its contributions to the molecular understanding of diseases in precision medicine by answering "what", "where", "how many" and "whose” chemicals underlying clinical phenotypes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号