首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44712篇
  免费   6490篇
  国内免费   4840篇
化学   31031篇
晶体学   447篇
力学   2800篇
综合类   411篇
数学   5146篇
物理学   16207篇
  2024年   143篇
  2023年   876篇
  2022年   1432篇
  2021年   1589篇
  2020年   1699篇
  2019年   1735篇
  2018年   1433篇
  2017年   1301篇
  2016年   2002篇
  2015年   2023篇
  2014年   2430篇
  2013年   3144篇
  2012年   3945篇
  2011年   3984篇
  2010年   2590篇
  2009年   2588篇
  2008年   2721篇
  2007年   2487篇
  2006年   2256篇
  2005年   1858篇
  2004年   1470篇
  2003年   1216篇
  2002年   1240篇
  2001年   940篇
  2000年   861篇
  1999年   973篇
  1998年   831篇
  1997年   794篇
  1996年   861篇
  1995年   679篇
  1994年   607篇
  1993年   533篇
  1992年   468篇
  1991年   413篇
  1990年   334篇
  1989年   276篇
  1988年   226篇
  1987年   174篇
  1986年   164篇
  1985年   163篇
  1984年   114篇
  1983年   79篇
  1982年   65篇
  1981年   47篇
  1979年   24篇
  1978年   25篇
  1977年   28篇
  1976年   24篇
  1975年   30篇
  1974年   30篇
排序方式: 共有10000条查询结果,搜索用时 22 毫秒
141.
Thymus immunosuppressive pentapeptide (TIPP) is a novel anti-inflammatory peptide with high efficacy and low toxicity. This study aims to establish a selective LC-MS/MS method for analyzing the analyte TIPP in biological samples, laying the foundation for further PK and PD studies of TIPP. Protein precipitation was conducted in acetonitrile supplemented with 2% formic acid and 25 mg/mL dithiothreitol as a stabilizer, which was followed by backwashing the organic phase using dichloromethane. The chromatographic separation of TIPP was achieved on a C18 column with a gradient elution method. During positive electrospray ionization, TIPP was analyzed via multiple-reaction monitoring. The linear relationships between the concentration of TIPP and peak area in murine plasma cell lysates, supernatants, and the final cell rinse PBS were established within the ranges of 20–5000 ng/mL, 1–200 ng/mL, 10–200 μg/mL, and 0.1–20 ng/mL, respectively (r2 > 0.99). Validated according to U.S. FDA guidelines, the proposed method was proved to be acceptable. Such a method had been successfully applied to investigate the pharmacokinetics of TIPP in mice via subcutaneous injection. The plasma half-life in mice was 5.987 ± 1.824 min, suggesting that TIPP is swiftly eliminated in vivo. The amount of TIPP uptake by RBL-2H3 cells was determined using this method, which was also visually verified by confocal. Furthermore, the effective intracellular concentration of TIPP was deduced by comparing the intracellular concentration of TIPP and degrees of inflammation, enlightening further investigation on the intracellular target and mechanism of TIPP.  相似文献   
142.
143.
We aimed to evaluate the inhibitory effect and mechanism of plantaricin YKX on S. aureus. The mode of action of plantaricin YKX against the cells of S. aureus indicated that plantaricin YKX was able to cause the leakage of cellular content and damage the structure of the cell membranes. Additionally, plantaricin YKX was also able to inhibit the formation of S. aureus biofilms. As the concentration of plantaricin YKX reached 3/4 MIC, the percentage of biofilm formation inhibition was over 50%. Fluorescent dye labeling combined with fluorescence microscopy confirmed the results. Finally, the effect of plantaricin YKX on the AI-2/LuxS QS system was investigated. Molecular docking predicted that the binding energy of AI-2 and plantaricin YKX was −4.7 kcal/mol and the binding energy of bacteriocin and luxS protein was −183.701 kcal/mol. The expression of the luxS gene increased significantly after being cocultured with plantaricin YKX, suggesting that plantaricin YKX can affect the QS system of S. aureus.  相似文献   
144.
Mulberry extract has been proven to have the effect of resisting alcohol damage, but its mechanism is still unclear. In this study, the composition of mulberry ethanol extract (MBE) was identified by LC-MS/MS and the main components of MBE were ascertained by measuring. Gastric mucosal epithelial (GES-1) cells were used to elucidate the mechanism of MBE and rutin (the central part of MBE) helped protect against alcohol damage. The results revealed that phenolics accounted for the majority of MBE, accounting for 308.6 mg/g gallic acid equivalents and 108 substances were identified, including 37 flavonoids and 50 non-flavonoids. The treatment of 400 μg/mL MBE and 320 μM rutin reduced early cell apoptosis and the content of intracellular reactive oxygen species, malondialdehyde and increased glutathione. The qPCR results indicated that the MBE inhibits the expression of genes in the mitogen-activated protein kinase (MAPK) pathway, including p38, JNK, ERK and caspase-3; rutin inhibits the expression of p38 and caspase-3. Overall, MBE was able to reduce the oxidative stress of GES-1 cells and regulated apoptosis-related genes of the MAPK pathway. This study provides information for developing anti-ethanol injury drugs or functional foods.  相似文献   
145.
We systematically measure the superconducting(SC) and mixed state properties of high-quality CsV_3 Sb_5 single crystals with T_c~3.5 K.We find that the upper critical field H_(c2)(T) exhibits a large anisotropic ratio of H_(c2)~(ab)/H_(c2)~c~9 at zero temperature and fitting its temperature dependence requires a minimum two-band effective model.Moreover,the ratio of the lower critical field,H_(c1)~(ab)/H_(c1)~c,is also found to be larger than 1,which indicates that the in-plane energy dispersion is strongly renormalized near Fermi energy.Both H_(c1)(T) and SC diamagnetic signal are found to change little initially below T_c~3.5 K and then to increase abruptly upon cooling to a characteristic temperature of ~2.8 K.Furthermore,we identify a two-fold anisotropy of in-plane angular-dependent magnetoresistance in the mixed state.Interestingly,we find that,below the same characteristic T~2.8 K,the orientation of this two-fold anisotropy displays a peculiar twist by an angle of 60° characteristic of the Kagome geometry.Our results suggest an intriguing superconducting state emerging in the complex environment of Kagome lattice,which,at least,is partially driven by electron-electron correlation.  相似文献   
146.
147.
To establish the analytic conditions for examining the aroma quality of vanilla pods, we compared different extraction methods and identified a suitable option. We utilized headspace solid-phase microextraction (HS-SPME), steam distillation (SD), simultaneous steam distillation (SDE) and alcoholic extraction combined with gas chromatography (GC) and gas chromatography–mass spectrometry (GC-MS) to identify volatile components of vanilla pods. A total of 84 volatile compounds were identified in this experiment, of which SDE could identify the most volatile compounds, with a total of 51 species, followed by HS-SPME, with a total of 28 species. Ten volatile compounds were identified by extraction with a minimum of 35% alcohol. HS-SPME extraction provided the highest total aroma peak areas, and the peak areas of aldehydes, furans, alcohols, monoterpenes and phenols compounds were several times higher than those of the other extraction methods. The results showed that the two technologies, SDE and HS-SPME, could be used together to facilitate analysis of vanilla pod aroma.  相似文献   
148.
Coordination hosts based on flexible ligands have received increasing attention due to their inherent adaptive cavities that often show induced-fit guest binding and catalysis like enzymes. Herein, we report the controlled self-assembly of a series of homo/heterometallic coordination hosts (Me4enPd)2n(ML)n [n = 2/3; M = Zn(ii)/Co(ii)/Ni(ii)/Cu(ii)/Pd(ii)/Ag(i); Me4en: N,N,N′,N′-tetramethylethylenediamine] with different shapes (tube/cage) from a flexible tetraazacyclododecane-based pyridinyl ligand (L) and cis-blocking Me4enPd(ii) units. While the Ag(i)-metalated ligand (AgL) gave rise to the formation of a (Me4enPd)4(ML)2-type cage, all other M(ii) ions led to isostructural (Me4enPd)6(ML)3-type tubular complexes. Structural transformations between cages and tubes could be realized through transmetalation of the ligand. The buffering effect on the ML panels endows the coordination tubes with remarkable acid–base resistance, which makes the (Me4enPd)6(ZnL)3 host an effective catalyst for the CO2 to CO32− conversion. Control experiments suggested that the integration of multiple active Zn(ii) sites on the tubular host and the perfect geometry match between CO32− and the cavity synergistically promoted such a conversion. Our results provide an important strategy for the design of adaptive coordination hosts to achieve efficient carbon fixation.

A series of coordination hosts were prepared and their applications in CO2 fixation were studied.  相似文献   
149.
Near-infrared (NIR) light-emitting materials show excellent potential applications in the fields of military technology, bioimaging, optical communication, organic light-emitting diodes (OLEDs), etc. Recently, thermally activated delayed fluorescence (TADF) emitters have made historic developments in the field of OLEDs. These metal-free materials are more attractive because of efficient reverse intersystem crossing processes which result in promising high efficiencies in OLEDs. However, the development of NIR TADF emitters has progressed at a relatively slower pace which could be ascribed to the difficult promotion of external quantum efficiencies. Thus, increasing attention has been paid to NIR TADF emitters. In this review, the recent progress of NIR TADF emitters has been summarized along with their molecular design strategies and photophysical properties, as well as electroluminescence performance data of their OLEDs, respectively.

This review presents the recent progress of NIR TADF emitters along with their molecular design strategies and photophysical properties, as well as the electroluminescence performance data of the emitters and their OLEDs.  相似文献   
150.
Extended polymeric structures based on redox-active species are of great interest in emerging technologies related to energy conversion and storage. However, redox-active monomers tend to inhibit radical polymerisation processes and hence, increase polydispersity and reduce the average molecular weight of the resultant polymers. Here, we demonstrate that styrenic viologens, which do not undergo radical polymerisation effectively on their own, can be readily copolymerised in the presence of cucurbit[n]uril (CB[n]) macrocycles. The presented strategy relies on pre-encapsulation of the viologen monomers within the molecular cavities of the CB[n] macrocycle. Upon polymerisation, the molecular weight of the resultant polymer was found to be an order of magnitude higher and the polydispersity reduced 5-fold. The mechanism responsible for this enhancement was unveiled through comprehensive spectroscopic and electrochemical studies. A combination of solubilisation/stabilisation of reduced viologen species as well as protection of the parent viologens against reduction gives rise to the higher molar masses and reduced polydispersities. The presented study highlights the potential of CB[n]-based host–guest chemistry to control both the redox behavior of monomers as well as the kinetics of their radical polymerisation, which will open up new opportunities across myriad fields.

Extended polymeric structures based on redox-active species are of great interest in emerging technologies related to energy conversion and storage.

Polyviologens are redox-active polymers based on N-substituted bipyridinium derivatives which have emerged as promising materials for energy conversion and storage.1–5 Their physicochemical properties can be adjusted through copolymerisation of the redox-active viologen monomers.6–8 The resultant materials are stable, water soluble and exhibit fast electron transfer kinetics. Polyviologens have been commonly fabricated through step-growth polymerisation in linear and dendritic architectures,9–13 as supramolecular polymers,14–16 networks,6,17,18 and covalent organic frameworks.19,20 Alternatively, anionic/cationic or metathesis-based polymerisations are used to avoid interference of radical-stabilising monomers with the radical initiators, however, these techniques are highly water- and/or oxygen-sensitive.21,22 When free-radical polymerisation (FRP) is conducted in the presence of viologen species, its reduction can cause a depletion of active radicals and thus disruption of the polymerisation process. Despite varying solvents, comonomers and initiator loadings, the direct FRP of viologen-containing monomers remains therefore limited to molar masses of 30 kDa.23–25 Accessing higher molar masses has been possible via post-polymerisation modification,26–28 which has impacted the electrochemical properties of the resultant materials.29,30 Alternative strategies to access higher molar masses of redox-active polymers and control their polymerisation are highly desirable.Incorporation of cucurbit[n]uril (CB[n]) macrocycles have lead to a variety of functional materials through host–guest chemistry.31–34 Moreover, the redox chemistry of viologens can be modulated through complexation with CB[n].35–38 Specifically, CB[n] (n = 7, 8) can tune the redox potential of pristine viologens and efficiently sequester monoreduced viologen radical cations, avoiding precipitation in aqueous environments. Further to this, we recently demonstrated that the viologen radical cation is stabilised by −20 kcal mol−1 when encapsulated in CB[7].39Consequently, we envisioned that incorporating CB[n]s as additives prior to polymerisation could (i) overcome current limits in accessible molar masses, (ii) increase control over FRP of viologen-based monomers through encapsulation and (iii) enable separation of radical species avoiding aggregation.Here, we demonstrate a new approach to control FRP of redox-active monomers leading to high molar masses and decreased dispersity of the resultant polymers. In absence of CB[n], co-polymerisation of the N-styryl-N′-phenyl viologen monomer 12+ and N,N-dimethylacrylamide (DMAAm) only occurs at high initiator loadings (>0.5 mol%, Fig. 1a), leading to low molecular weights and high polydispersity. Using our synthetic approach, 12+ is efficiently copolymerised with DMAAm in the presence of CB[n] (n = 7, 8) macrocycles resulting in control of the polymer molar mass across a broad range, 4–500 kDa (Fig. 1b). Finally, CB[n] are successfully removed from the polymer via competitive host–guest binding and dialysis. Spectroscopic and electrochemical studies revealed that solubilisation/stabilisation of the reduced species and/or shielding of the redox-active monomers from electron transfer processes was responsible for this enhancement.Open in a separate windowFig. 1Schematic representation of the investigated polymerisation. (a) Conventional free radical polymerisation either completely fails to copolymerise redox-active monomers (low initiator loading) or delivers copolymers with limited molar masses and high dispersities (high initiator loading). (b) CB[n]-mediated protection suppresses interference of viologen monomers with radicals formed through the initiation process facilitating copolymerisation. The molar mass of the resulting copolymers is readily tunable via the amount of present CB[n] macrocycles and the CB[n] is post-synthetically removed via competitive binding to yield the final copolymer with desired molar mass. Cl counter-ions are omitted for clarity.Recent studies on symmetric aryl viologens demonstrated 2 : 2 binding modes with CB[8] and high binding constants (up to Ka ∼ 1011 M−2).40,41 Incorporation of polymerisable vinyl moieties, in combination with the relatively static structure of their CB[n] host–guest complexes, was postulated to allow polymerisation without unfavorable side reactions. The asymmetric N-styryl-N′-phenyl viologen monomer 12+ prepared for this study (Fig. S1a and S2–S13) displays a linear geometry and was predicted to bind CB[n] (n = 7, 8) in a 2 : 1 and 2 : 2 binding fashion (Fig. S1b).40,42 Binding modes between CB[n] (n = 7, 8) and 12+ were investigated through titration experiments (1H NMR and ITC) which confirmed the formation of 1·(CB[7])2 and (1)2·(CB[8])2 (see Fig. S25 and S26). 1H NMR titration of CB[7] with 12+ demonstrates encapsulation of both aryl moieties (including the vinyl group) through upfield chemical shifts of the respective signals (Fig. 2a). Similar upfield shifts were observed for CB[8] (Fig. 2c). Different para-aryl substituents (vinyl vs. hydrogen) resulted in either head-to-tail or head-to-head (1)2·(CB[8])2 dimers (Fig. S1b and S26), a previously reported phenomenon.43 Nonetheless, the reversible nature of the complex renders the vinyl group temporarily available for copolymerisation. In the presence of CB[8], 12+ yields polymer molar masses of up to 500 kDa as its complexation is more robust. ITC data confirmed binding stoichiometry, with binding constants of Ka = 2.64 × 106 M−1 for 1·(CB[7])2 and Ka = 9.02 × 1010 M−2 for (1)2·(CB[8])2 (Table S2, Fig. S29a and b).Open in a separate windowFig. 2Supramolecular complexation of 12+ and CB[n]. 1H NMR spectra of 12+ at (a) χCB[7] = 2, (b) χCB[n] = 0 and (c) χCB[8] = 1 in D2O. Cl counter-ions are omitted for clarity.The free radical copolymerisation of 12+ and DMAAm ([M] = 2 M), in the absence of CB[n], was based on optimised DMAAm homopolymerisations (Fig. S14 and S15) and full conversion was confirmed by 1H NMR spectroscopy (Table S1 and Fig. S16). 12+ was maintained at 1 mol% relative to DMAAm and by varying the radical initiator concentration molar masses of up to 30 kDa with broad dispersities (Đ = 11.4) were obtained (Fig. S17). Lower initiator concentrations (<0.25 mol%) limited polymerisation (Mn = 3.7 kDa) and size exclusion chromatography elution peaks exhibited extensive tailing, suggesting that 12+ engages in radical transfer processes.To verify our hypothesis that CB[n] macrocycles can modulate the redox behavior of 12+, FRP of 12+ and DMAAm was conducted with varying amounts of CB[n] (n = 7, 8) (Fig. 3, S18 and S20). Full conversion of all monomers including their successful incorporation into the polymer was verified via1H NMR spectroscopy and SEC (Fig. S18 and S21–S23). Using CB[7], the molar mass of the copolymers was tunable between Mn = 3.7–160 kDa (Fig. 3b and S21a). Importantly, in the presence of CB[8], a broad range of molar masses Mn = 3.7–500 kDa were accessible for 0 < χCB[8] < 1.2 (Fig. S20 and S21b). Increasing the CB[n] (n = 7, 8) concentration caused dispersity values to converge to Đ = 2.2 (χCB[8] = 1.2, χ is the ratio of CB[n] to the redox-active monomer, Fig. S20). The copolymers were purified by addition of adamantylamine (competitive binder) prior to dialysis to deliver CB[n]-free redox-active copolymers (Fig. S23).Open in a separate windowFig. 3(a) In situ copolymerisation of DMAAm with 12+ and CB[7]. (b) Molar mass and dispersity vs. amount of CB[7] in the system. Fitted curve is drawn to guide the eye. Cl counter-ions are omitted for clarity.The range of molar masses obtainable through addition of CB[n] (n = 7, 8) correlated with the measured Ka (Fig. 3b and S20). Binding of 12+ to CB[8] was stronger and therefore lower concentrations of CB[8] were required to shift the binding equilibrium and mitigate disruption of the polymerisation. Dispersity values reached a maximum at χCB[7] = 0.6 or χCB[8] = 0.3, suggesting 1+˙ is only partially encapsulated. Consequently, higher CB[n] concentrations can enable FRP with lower initiator concentrations (0.10 mol%, Fig. S19), which demonstrates the major role of complexation to modulate electron accepting properties of 12+.The redox-active monomer 12+ can engage with propagating primary radicals (P) to either be incorporated into the growing polymer chain (Pm–12+˙) or to abstract an electron deactivating it (Pm). This deactivation likely occurs through oxidative termination producing 1+˙ (energetic sink), inactive oligo- and/or polymer chains (Pm) and a proton H+, causing retardation of the overall polymerisation. Oxidative terminations have been previously observed in aqueous polymerisations of methyl methacrylate, styrenes and acrylonitriles that make use of redox initiator systems.44–47 Another example by Das et al. investigated the use of methylene blue as a retarder, with the primary radical being transferred to a methylene blue electron acceptor via oxidative termination, altogether supporting the outlined mechanism of our system (extended discussion see ESI, Section 1.4).48The process of retardation can, however, be successfully suppressed, when monomer 12+ is encapsulated within CB[n] macrocycles. Herein the formation of 1·(CB[7])2 or (1)2·(CB[8])2 results in shielding of the redox-active component of 12+ from other radicals within the system, hampering other electron transfer reactions. This inhibits termination and results in extended polymerisation processes leading to higher molar mass polymers through mitigation of radical transfer reactions. Moreover, suppressing the formation of 1+˙ through supramolecular encapsulation minimises both π and σ dimerisation of the emerging viologen radical species,39 preventing any further reactions that could impact the molar mass or polydispersity of the resulting polymers.Cyclic voltammetry (CV) and UV-Vis titration experiments were conducted to provide insight into the impact of CB[n] on the redox behavior and control over FRP of 12+. Excess of CB[n] (n = 7, 8) towards 12+ resulted in a complete suppression of electron transfer processes (Fig. S31 and S32). Initially, 12+ shows a quasi-reversible reduction wave at −0.44 V forming 1+˙ (Fig. 4a). Increasing χCB[7], this reduction peak decreases and shifts towards more negative potentials (−0.51 V, χCB[7] = 1) accompanied by the formation of 12+·(CB[7])1. A second cathodic peak emerges at −0.75 V due to the increased formation of 12+·(CB[7])2. At χCB[7] = 2, this peak shifts to −0.80 V, where it reaches maximum intensity, once 12+·(CB[7])2 is the dominating species in solution. When 2 < χCB[7] < 4, the intensity of the reduction peak decreases and the complexation equilibrium is shifted towards the bound state, complete suppression of the reduction peak occurs at χCB[7] = 4. Similarly, the oxidation wave intensity is reduced by 95% at χCB[7] = 4 causing suppression of potential oxidative radical transfer processes (Fig. 4c).Open in a separate windowFig. 4Mechanism of the CB[n]-mediated (n = 7, 8) strategy for the controlled copolymerisation of redox-active monomer 12+. (a) Cyclic voltammogram with varying amounts of CB[7]. (b) UV-Vis titration of 12+ with varying amounts of CB[7]. (c) Intensity decay of the oxidation peak at −0.27 V and change in absorption maximum of 1+˙ at 590 nm vs. χCB[7]. (d) Electron transfer processes of 12+ to generate 1+˙ and 10. (e) Reduction of 12+ resulting in precipitation of 10. (f) Stabilisation of 1+˙ through encapsulation with CB[7]. (g) Protection of 12+ from redox processes through CB[7]-mediated encapsulation.The concentration of 1+˙ can be monitored using UV-Vis (Fig. 4b and S34).49 Absorbance at 590 nm (λmax) vs. χCB[7] was plotted and the concentration of 1+˙ increases, reaching a maximum at χCB[7] = 4 (Fig. 4c). When χCB[7] > 4, a decrease in concentration of 1+˙ was observed. We postulate the following mechanism: at χCB[7] = 0, 12+ is reduced to produce high concentrations of 1+˙ that partially disproportionates to form 10, which precipitates (Fig. 4e and S34). When 0 < χCB[7] < 4, increasing amounts of green 1+˙ are stabilised through encapsulation within CB[7] suppressing disproportionation (Fig. 4c (cuvette pictures), Fig. 4f). For χCB[7] > 4, 12+ is protected from reduction through encapsulation (Fig. 4g).To further demonstrate applicability of this strategy, we chose another viologen-based monomer 22+ for copolymerisation (Fig. 5a). As opposed to 12+, CB binds predominantly to the styryl moiety of 22+ (Fig. S27 and S28).50 ITC data showed that 22+ binds CB[7] in a 1 : 1 fashion with a binding affinity of Ka = 2.32 × 106 M−1 (Fig. S30 and Table S2). Monomer 22+ was also analysed via CV and showed three reversible reduction waves at −0.91 V, −0.61 V (viologen) and 0.40 V (styrene). Similar to 12+, excess CB[7] selectively protects the molecule from redox processes, while the vinyl moiety remains accessible (Fig. 5a, S33c and d). For CB[8], only partial suppression of electron transfer processes was observed (Fig. S33e and f). We therefore chose CB[7] as an additive to increase control over FRP of 22+ (Fig. 5b). Copolymerisation of 22+ (1 mol%) and DMAAm ([M] = 2 M) at χCB[7] = 0 resulted in Mn = 28 kDa. When χCB[7] = 0.1, 0.2 or 0.3, Mn increased gradually from 124 to 230 and 313 kDa, respectively, demonstrating the potential of this strategy for FRP of redox-active monomers. Higher percentages of CB[7] led to copolymers with presumably higher molar masses causing a drastic decrease in solubility that prevented further analysis. Investigations on a broader spectrum of such copolymers, including those with higher contents of 22+ are currently ongoing.Open in a separate windowFig. 5(a) Cyclic voltammogram of viologen-containing monomer 22+ and its complexation with CB[n] (n = 7, 8) at a concentration of 1 mM using a scan rate of 10 mV s−1 in 0.1 mM NaCl solution. (b) Molar mass and dispersity of 22+-containing copolymers vs. equivalents of CB[7]. Cl counter-ions are omitted for clarity.In conclusion, we report a supramolecular strategy to induce control over the free radical polymerisation of redox-active building blocks, unlocking high molar masses and reducing polydispersity of the resulting polymers. Through the use of CB[n] macrocycles (n = 7, 8) for the copolymerisation of styrenic viologen 12+, a broad range of molar masses between 3.7–500 kDa becomes accessible. Our mechanistic investigations elucidated that the redox behavior of monomer 12+ is dominated by either CB[n]-mediated stabilisation of monoradical cationic species or protection of the encapsulated pyridinium species from reduction. In the stabilisation regime (χCB[7] < 4), 12+ is reduced to form the radical cation 1+˙, which is subsequently stabilised through CB[7] encapsulation. Upon reaching a critical concentration of CB[7] (χCB[7] > 4), the system enters a protection-dominated regime, where reduction of 12+ is suppressed and the concentration of 1+˙ diminishes. The resulting copolymers can be purified by use of a competitive binder to remove CB[n] macrocycles from the product. This strategy was successfully translated to a structurally different redox-active monomer that suffered similar limitations. We believe that the reported strategy of copolymerisation of redox-active monomers will open new avenues in the synthesis of functional materials for energy conversion and storage as well as for applications in electrochromic devices and (nano)electronics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号