首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   494篇
  免费   5篇
  国内免费   3篇
化学   378篇
晶体学   7篇
力学   8篇
数学   25篇
物理学   84篇
  2023年   4篇
  2022年   2篇
  2021年   4篇
  2020年   7篇
  2019年   2篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   8篇
  2013年   24篇
  2012年   18篇
  2011年   26篇
  2010年   4篇
  2009年   9篇
  2008年   42篇
  2007年   34篇
  2006年   31篇
  2005年   40篇
  2004年   36篇
  2003年   24篇
  2002年   19篇
  2001年   9篇
  2000年   5篇
  1999年   9篇
  1998年   6篇
  1997年   7篇
  1996年   6篇
  1995年   4篇
  1994年   8篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1986年   3篇
  1985年   9篇
  1984年   6篇
  1982年   6篇
  1981年   4篇
  1980年   5篇
  1979年   6篇
  1978年   5篇
  1977年   4篇
  1976年   6篇
  1975年   8篇
  1974年   6篇
  1973年   4篇
  1969年   2篇
  1966年   2篇
排序方式: 共有502条查询结果,搜索用时 15 毫秒
131.
Morphological and spectroscopic properties of pseudoisocyanine (PIC) J aggregates produced at mica/solution interfaces have been characterized by absorption/fluorescence spectroscopy, fluorescence microscopy, and atomic force microscopy. Addition of organic solvents (1-propanol (PrOH) or 1,4-dioxane (Dox)) into aqueous solutions of the PIC dye induced a transition of the morphology of the interfacial J aggregates. The characteristic feature of this transition is the thickness (or height) change of the aggregate domain layers from three-dimensions to two-dimensions: The domain area of the J aggregates was dependent on the amount of the organic cosolvent, while the domain thickness was dependent on the type of the cosolvent. In pure aqueous solution, the J aggregates at the mica/water interface had a three-dimensional structure with the height of approximately 3 nm (multilayer structure). In mixed solvents of PrOH/water or Dox/water (5 or 10 vol%), the interfacial aggregates became a bilayer or monolayer structure, respectively, assuming that PIC molecules are adsorbed on their molecular plane perpendicular to the mica surface. Meanwhile, optical properties (band width and peak position) of the J band were invariant upon addition of the organic cosolvents, suggesting that molecular packing in the J aggregates is essentially unchanged. These results revealed that spectroscopic properties of the interfacial PIC J aggregates were determined only by the lateral (two-dimensional) interaction within the adsorbed monolayer of PIC molecules on mica, and interlayer interaction in the multilayered J aggregate was consequently small.  相似文献   
132.
We developed a novel channel wall coating on a poly(methyl methacrylate) (PMMA) microchip using methylcellulose (MC) as a coating reagent to suppress electroosmotic flow (EOF) following the strong analytes adsorption via hydrophobic interaction with channel walls of PMMA. Our coating was obtained by first rinsing channel walls with MC-containing aqueous solution followed by evaporation. The coating made the hydrophilic channel wall lowering EOF by two orders of magnitude (1.2 x 10(-5)cm(2)V(-1)s(-1)) as well as reducing the hydrophobic adsorption. On the coated channel walls, we successfully separated sodium dodecyl sulfate-protein complexes with high reproducibility and efficiency using dextran as a lower viscosity protein separation medium.  相似文献   
133.
To control the activity of photosensitized singlet oxygen ((1)O(2)) generation, the electron donor-connecting porphyrin, 5-(9'-anthryl)-10,15,20-tris(p-pyridyl)porphyrin (AnTPyP), was designed and synthesized. AnTPyP became water-soluble by the protonation of the pyridyl moieties in the presence of 5 mM trifluoroacetic acid (pH 2.3). The photoexcited state of the porphyrin ring in an AnTPyP molecule was effectively deactivated by intramolecular electron transfer from the anthracene moiety within 0.04 ns in an aqueous solution. The deactivation was suppressed by the interaction with a DNA strand, resulting in the elongation of the lifetime of the porphyrin excited state and the enhancement of the fluorescence intensity. Furthermore, it was confirmed that the interaction enabled the photoexcited AnTPyP to generate (1)O(2). Selective (1)O(2) generation by forming a complex with DNA should be the initial step to realize the target selective photodynamic therapy.  相似文献   
134.
A thermo-responsive separation matrix, consisting of Pluronic F127 tri-block copolymers of poly(ethylene oxide) and poly(propylene oxide), was used to separate DNA fragments by microchip electrophoresis. At low temperature, the polymer matrix was low in viscosity and allowed rapid loading into a microchannel under low pressure. With increasing temperatures above 25°C, the Pluronic F127 solution forms a liquid crystalline phase consisting of spherical micelles with diameters of 17–19 nm. The solution can be used to separate DNA fragments from 100 bp to 1500 bp on poly(methyl methacrylate) (PMMA) chips. This temperature-sensitive and viscosity-tunable polymer provided excellent resolution over a wide range of DNA sizes. Separation is based on a different mechanism compared with conventional matrices such as methylcellulose. To illustrate the separation mechanism of DNA in a Pluronic F127 solution, DNA molecular imaging was performed by fluorescence microscopy with F127 polymer as the separation matrix in microchip electrophoresis. Figure Temperature dependence of the viscosity of 20% w/w Pluronic F127 solution in 1xTBE buffer. Dotted approximates resultant curve.  相似文献   
135.
Microchip electrophoresis (MCE), a first-generation micrototal analysis system, has emerged during the miniaturization phase of food analysis. Based on the micellar electrokinetic chromatography mode, a simple and fast MCE method with light emitting diode-induced fluorescence detection was developed for quantitative analysis of amino acids in three different kinds of functional foods, viz. sports beverages, jelly-form beverages, and tablet-form functional foods. In contrast to the glass microchip, we improved the separation of amino acids on a poly(methyl methacrylate) (PMMA) chip by addition of cationic starch derivatives. 4-fluoro-7-nitro-2,1,3-benzoxadiazole, which has a short labeling time for amino acids, was used as the fluorescently labeled dye. This MCE method takes less than 10 min of total analysis time including sample preparation and analysis of amino acids in functional foods on a PMMA chip. The results show that this approach has the potential to be a fast and simple method for amino acid analysis in functional foods.  相似文献   
136.
A novel yet versatile approach is described for surface-initiated living radical polymerization (SI-LRP) from silica particles (SiPs). Monodisperse SiPs were surface-modified with a newly designed surface-fixable initiator (BPEGE) having three components: a triethoxysilane moiety, a poly(ethylene glycol) (PEG) unit, and an initiation site for atom transfer radical polymerization (ATRP) in the form of a 2-bromoisobutyryl group. The surface-initiated ATRP of methyl methacrylate (MMA) mediated by a copper complex was carried out with the BPEGE-fixed SiPs. The polymerization proceeded in a living manner, producing SiPs coated with well-defined poly(MMA) of a target molecular weight with a graft density as high as 0.5 chains/nm2. Thanks to the amphiphilic property of PEG, the system was successfully applied for SI-ATRP of PEG methacrylate and sodium p-styrenesulfonate in aqueous media in which the BPEGE-fixed SiPs were highly dispersed without causing any aggregations. The formation of colloidal crystals with the polymer brush-afforded SiPs demonstrated the high uniformity and perfect dispersibility of the hybrid particles.  相似文献   
137.
Although there have been a lot of reports on the synthesis and properties of [n]rotaxanes (mainly n = 2), only a few reports on the synthesis of [1]rotaxane has been published by V?gtle's group and others (see ref 5). Generally speaking, [1]rotaxane might be expected to exhibit properties different from other rotaxanes, because the rotor and the axle in the [1]rotaxane is bound covalently and closely. We report on a novel method to make [1]rotaxanes via covalent bond formation from a macrocyclic compound. That is, we first prepared a bicyclic compound from macrocycle and then proceeded to [1]rotaxane by aminolysis. This is the first synthetic example of preparation of [1]rotaxane via covalent bond formation, not utilizing weak interactions such as hydrogen bonding, charge transfer, via metal complexation, etc. This method might provide a powerful and new tool for construction of [1]rotaxane as a new supramolecular system. In addition, we investigated energy transfer from rotor to axle using [1]rotaxane that we prepared. Energy transfer occurred perfectly from the naphthalene ring of the rotor to the anthracene ring of the axle. We found also that only lithium ion among alkali ions can drastically enhance the fluorescence intensity. This finding could be applicable to ion-sensing systems, switching devices, and so on.  相似文献   
138.
We have examined the interfacial properties of several fluorinated surfactants in a water/CO2 mixture with a pendant drop tensiometer and revealed the relationships between the interfacial properties, the surfactant structure, and the microemulsifying power. We employed the following Aerosol-OT analogue surfactants that have two fluorinated tails: bis(1H,1H,5H-octafluoropentyl)-2-sulfosuccinate (di-HCF4), sodium bis(1H,1H,9H-hexadecafluorononyl)-2-sulfosuccinate (di-HCF8), sodium bis(1H,1H,2H,2H-heptadecafluorodecyl)-2-sulfosuccinate (8FS(EO)2), and sodium bis((1H,1H,2H,2H-heptadecafluorodecyl)-oxyethylene)-2-sulfosuccinate (8FS(EO)4). To discuss the effect of the fluorocarbon/hydrocarbon ratio in single surfactant molecules, water/CO2 interfacial tension (IFT) of a hybrid surfactant with one fluorocarbon and one hydrocarbon tail, that of a surfactant with a single fluorinated tail, and that of a hydrocarbon surfactant, Aerosol-OT (AOT), were examined. The hybrid surfactant employed was sodium 1-oxo-1-[4-(tridecafluorohexyl)phenyl]-2-hexanesulfonate (FC6-HC4), and the single-tailed surfactant was perfluoropolyether ammonium carboxylate (PFPECOONH4, CF3CF2(CF2OCF(CF3))4COONH4). All of the fluorinated AOT analogue surfactants exhibited an excellent level of activity at the water/CO2 interface compared with other fluorinated surfactants and AOT. With a larger hydrocarbon chain number in the CO2-philic tails (i.e., from 0 to 2), the IFT of the AOT analogue surfactants was increased. The area occupied by one surfactant molecule at the water/CO2 interface, A, and the critical microemulsion concentration, cmicroc, were determined and used to examine the water-to-surfactant molar ratio within a reversed micelle, W0c, of the surfactants. The surfactants that form W/scCO2 microemulsions with a large W0c were found to lower the interfacial tension efficiently irrespective of increases in temperature. To achieve the most desirable W0C, the surfactant needs not only a high CO2-philicity of the tails but also a high Krafft point, properties which induce a low hydrophilic/CO2-philic balance.  相似文献   
139.
The stable structure of clean Si(0 0 1) surface around 100 K is the c(4 × 2) arrangement constructed by buckled dimers. This structure was widely accepted as the ground state in 1990’s. The view was challenged at the beginning of 2000’s by the observations of a p(2 × 1) structure below 20 K with scanning tunneling microscopy (STM). Recent experimental studies confirm that the dimer is buckled below 30 K. Large tip–surface interaction, and/or tunneling current induced dynamical effect are now experimentally evident in the STM images at low temperatures. Moreover, a current induced structure transformation is discovered below 40 K even in the study by low energy electron diffraction. Dynamical electronic and vibrational effects are theoretically studied for accounting the observation of a p(2 × 1) structure below 20 K.  相似文献   
140.
Preparation of natural rubber (NR) with a soft nanomatrix structure was made by graft-copolymerization of butyl acrylate (BA) onto deproteinized natural rubber with tert-butyl hydroperoxide/tetraetylenepentamine in latex stage. The resulting graft-copolymer of deproteinized natural rubber and poly (butyl acrylate) (DPNR-graft-PBA) was characterized by Fourier-transform infrared spectroscopy. Conversion and grafting efficiency of BA were dependent upon BA concentration, which were more than 90?mol% under a suitable condition of the graft-copolymerization. Morphology of DPNR-graft-PBA was observed by transmission electron microscopy after staining film specimens with I2 vapor for 5?min. The NR particles of about 0.5?μm in diameter were dispersed in PBA matrix of about 15?nm in thickness. Storage modulus and loss tangent of DPNR-graft-PBA were measured, and they were related with the soft nanomatrix structure. The tensile strength and elongation at break decreased as monomer concentration increased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号