首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   376篇
  免费   32篇
  国内免费   4篇
化学   368篇
晶体学   2篇
力学   2篇
数学   8篇
物理学   32篇
  2023年   1篇
  2022年   5篇
  2021年   3篇
  2020年   13篇
  2019年   7篇
  2018年   8篇
  2017年   2篇
  2016年   17篇
  2015年   7篇
  2014年   6篇
  2013年   12篇
  2012年   19篇
  2011年   31篇
  2010年   14篇
  2009年   18篇
  2008年   35篇
  2007年   31篇
  2006年   25篇
  2005年   30篇
  2004年   24篇
  2003年   23篇
  2002年   22篇
  2001年   4篇
  2000年   4篇
  1999年   8篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1993年   2篇
  1991年   4篇
  1988年   2篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1972年   1篇
排序方式: 共有412条查询结果,搜索用时 15 毫秒
11.
2,6-Diphenylbenzo[1,2-b:4,5-b']dichalcogenophenes including thiophene, selenophene, and tellurophene analogues as organic semiconductors for field-effect transistors were effectively synthesized in three steps from commercially available 1,4-dibromobenzene. All three benzodichalcogenophenes acted as good p-type semiconductors, and particularly the selenophene analogue, 2,6-diphenylbenzo[1,2-b:4,5-b']diselenophene, showed high FET mobility of 0.17 cm2 V-1 s-1.  相似文献   
12.
Three types of heteropolyvanadates, [(C2H5)4N]4[PdV6O18] (1), [(C2H5)4N]4[Cu2V8O24] (2), and [(C6H5)4P]4[Ni4V10O30(OH)2(H2O)6] (3), were synthesized through the reaction between the [VO3]- anion and metal template cations of Pd(II), Cu(II), and Ni(II). The X-ray crystal structures of 1 (a = 29.952(4) A, b = 12.911(2) A, and c = 13.678(2) A, orthorhombic, space group Pca2(1) with Z = 4), 2 (a = 13.740(1) A, b = 22.488(2) A, c = 18.505(2) A, and beta= 94.058(2) degrees , monoclinic, space group P2(1)/n with Z = 4), and 3 (a = 12.333(2) A, b = 16.208(4) A, c = 16.516(3) A, alpha = 112.438(3) degrees , beta = 94.735(3) degrees , and gamma = 104.749(3) degrees , triclinic, space group P with Z = 1) demonstrate that the metal cationic species induced cyclic [VO3](n-)n (n = 6, 8, 10) ring formation and the cations are incorporated in the rings themselves. In the metal inclusion products, the cyclic vanadates act as macrocyclic ligands, in which the metal cationic species act as the templates. The cyclic vanadate is composed of tetrahedral VO4 units that share corners and incorporates a metal cationic species in the center of the molecules. The bowl-shaped complex 1 includes a Pd2+ cation that is coordinated by the oxygen donors of a boatlike hexavanadate ring. The diamagnetic complex 1 was characterized via 51V and 17O NMR spectroscopy. Complex 2 involves an octavanadate ring and two Cu2+, which are located on both sides of the mean plane as defined by the eight oxygen atoms that bridge the vanadium atoms. In the case of complex 3, the di-mu-hydroxo-bridged Ni2+ dimer with capped Ni2+ aqua ions is formed by hydrolysis to form the decavanadate ring, in which two of the tetrahedral vanadate units are not bonded to the Ni2+ core but supported by hydrogen bonds through the aqua-ligand in the capped Ni2+ cation. Complexes 1-3 in solution were clearly identified by their characteristic isotope patterns using ESI-MS studies.  相似文献   
13.
Hydrogels of poly(2-hydroxyethyl methacrylate) (PHEMA) with well-defined polyelectrolyte brushes of poly(sodium 4-styrenesulfonate) (PNaSS) of various molecular weights were synthesized, keeping the distance between the polymer brushes constant at ca. 20 nm. The effect of polyelectrolyte brush length on the sliding friction against a glass plate, an electrorepulsive solid substrate, was investigated in water in a velocity range of 7.5 x 10(-5) to 7.5 x 10(-2) m/s. It is found that the presence of polymer brush can dramatically reduce the friction when the polymer brushes are short. With an increase in the length of the polymer brush, this drag reduction effect only works at a low sliding velocity, and the gel with long polymer brushes even shows a higher friction than that of a normal network gel at a high sliding velocity. The strong polymer length and sliding velocity dependence indicate a dynamic mechanism of the polymer brush effect.  相似文献   
14.
This paper reports the isolation and structural determination of a water-soluble hydride complex [Cp*Ir(III)(bpy)H](+) (1, Cp* = eta(5)-C(5)Me(5), bpy = 2,2'-bipyridine) that serves as a robust and highly active catalyst for acid-catalyzed transfer hydrogenations of carbonyl compounds at pH 2.0-3.0 at 70 degrees C. The catalyst 1 was synthesized from the reaction of a precatalyst [Cp*Ir(III)(bpy)(OH(2))](2+) (2) with hydrogen donors HCOOX (X = H or Na) in H(2)O under controlled conditions (2.0 < pH < 6.0, 25 degrees C) which avoid protonation of the hydrido ligand of 1 below pH ca. 1.0 and deprotonation of the aqua ligand of 2 above pH ca. 6.0 (pK(a) value of 2 = 6.6). X-ray analysis shows that complex 1 adopts a distorted octahedral geometry with the Ir atom coordinated by one eta(5)-Cp*, one bidentate bpy, and one terminal hydrido ligand that occupies a bond position. The isolation of 1 allowed us to investigate the robust ability of 1 in acidic media and reducing ability of 1 in the reaction with carbonyl compounds under both stoichiometric and catalytic conditions. The rate of the acid-catalyzed transfer hydrogenation is drastically dependent on pH of the solution, reaction temperature, and concentration of HCOOH. The effect of pH on the rate of the transfer hydrogenation is rationalized by the pH-dependent formation of 1 and activation process of the carbonyl compounds by protons. High turnover frequencies of the acid-catalyzed transfer hydrogenations at pH 2.0-3.0 are ascribed not only to nucleophilicity of 1 toward the carbonyl groups activated by protons but also to a protonic character of the hydrido ligand of 1 that inhibits the protonation of the hydrido ligand.  相似文献   
15.
Luminous membranes were prepared by immobilizing peroxidase (POD) to collagen matrix. The POD luminous membrane generated luninescence in the presence of luminol and H2O2, and the peroxide was determined in the concentration range 10-6-10-3 M by following luminescence emitted from the membrane. Glucose was determined using a luminous membrane in which POD and glucose oxidase (GOD) were coimmobilized. The luminous membranes appear to be feasible for the determination of enzyme substrates and enzyme activity.  相似文献   
16.
The first isolation and spectroscopic characterization of the mononuclear hydroperoxo-iron(III) complex [Fe(H(2)bppa)(OOH)](2+) (2) and the stoichiometric oxidation of substrates by the mononuclear iron-oxo intermediate generated by its decomposition have been described. The purple species 2 obtained from reaction of [Fe(H(2)bppa)(HCOO)](ClO(4))(2) with H(2)O(2) in acetone at -50 degrees C gave characteristic UV-vis (lambda(max) = 568 nm, epsilon = 1200 M(-1) cm(-1)), ESR (g = 7.54, 5.78, and 4.25, S = (5)/(2)), and ESI mass spectra (m/z 288.5 corresponding to the ion, [Fe(bppa)(OOH)](2+)), which revealed that 2 is a high-spin mononuclear iron(III) complex with a hydroperoxide in an end-on fashion. The resonance Raman spectrum of 2 in d(6)-acetone revealed two intense bands at 621 and 830 cm(-1), which shifted to 599 and 813 cm(-1), respectively, when reacted with (18)O-labeled H(2)O(2). Reactions of the isolated (bppa)Fe(III)-OOH (2) with various substrates (single turnover oxidations) exhibited that the iron-oxo intermediate generated by decomposition of 2 is a nucleophilic species formulated as [(H(2)bppa)Fe(III)-O*].  相似文献   
17.
Dexmedetomidine (Dex) is a selective central α2‐agonist with anesthetic properties and has been used in clinical practice for sedation in the intensive care unit (ICU) after operations. In this study, an analytical assay for the determination of Dex in a small amount of plasma was developed for the application to pediatric ICU trials. The quantification of Dex was constructed using the original stable isotope Dex‐d3 for electrospray ionization‐tandem mass spectrometry (ESI‐MS/MS) in the selected reaction monitoring mode. A rapid ultra‐performance liquid chromatography technique was adopted using ESI‐MS/MS with a runtime of 3 min. Efficacious concentration levels (50 pg/mL to 5 ng/mL) could be evaluated using a very small amount of plasma (10 μL) from patients. The lower limit of the quantification was 5 pg/mL in the plasma (100 µL). For sample preparation, a solid‐phase extraction was used along with the OASIS‐HLB cartridge type. Recovery values ranged from 98.8 to 100.3% for the intra‐ [relative standard deviation (RSD), 0.9–1.3%] and inter‐ (RSD, 0.9–1.5%) day assays. A stable test had recovery values that ranged from 97.8 to 99.7% with an RSD of 1.0–1.9% for the process/wet extract, bench‐top, freeze–thaw and long‐term tests. This method was used to measure the Dex levels in plasma from pediatric ICU patients. In the clinical ICU trial, the small amount of blood (approximate plasma volume, 200 μL) remaining from blood gas analysis was reused and targeted for the clinical analysis of Dex in plasma. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
18.
This study addresses the inherent issues surrounding surface modification methods of nanofibers and proposes an environmentally friendly and less toxic strategy for the surface modification of hydrophilic nanofiber. From the continuation of our previous work, which discussed the easy production of nanofiber (average size: 127 nm) from oil palm mesocarp fiber (OPMF), in this work, the surface of nanofibers (M‐IL‐OPMF) were modified through vapor‐phase‐assisted surface polymerization (VASP) to improve the affinity of interface between the polymer grafted M‐IL‐OPMF and non‐polar matrix. VASP of ε‐caprolactone was successfully proceeded from the [M‐IL‐OPMF] at 70 °C for 24 h and 72 h, and compositions were estimated to be 35.7% fiber/64.3% polymer and 27.8% fiber/72.2% polymer. To confirm the grafting of PCL, size‐exclusion chromatography (SEC) and Fourier transform infrared (FT‐IR) spectroscopy, thermogravimetry (TG), and dispersibility test in hydrophobic solvent were carried out. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2575–2580  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号