首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   2篇
化学   105篇
力学   12篇
数学   80篇
物理学   119篇
  2023年   4篇
  2022年   4篇
  2021年   4篇
  2020年   6篇
  2019年   7篇
  2018年   5篇
  2017年   4篇
  2016年   8篇
  2015年   5篇
  2014年   10篇
  2013年   21篇
  2012年   8篇
  2011年   26篇
  2010年   10篇
  2009年   11篇
  2008年   21篇
  2007年   21篇
  2006年   27篇
  2005年   10篇
  2004年   14篇
  2003年   6篇
  2002年   11篇
  2001年   1篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   7篇
  1995年   2篇
  1994年   7篇
  1993年   7篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
排序方式: 共有316条查询结果,搜索用时 0 毫秒
311.
We report herein ab initio molecular dynamics simulations of graphite under shock compression in conjunction with the multiscale shock technique. Our simulations reveal that a novel short-lived layered diamond intermediate is formed within a few hundred of femtoseconds upon shock loading at a shock velocity of 12 kms (longitudinal stress>130 GPa), followed by formation of cubic diamond. The layered diamond state differs from the experimentally observed hexagonal diamond intermediate found at lower pressures and previous hydrostatic calculations in that a rapid buckling of the graphitic planes produces a mixture of hexagonal and cubic diamond (layered diamond). Direct calculation of the x-ray absorption spectra in our simulations reveals that the electronic structure of the final state closely resembles that of compressed cubic diamond.  相似文献   
312.
Like-charged solid interfaces repel and separate from one another as much as possible. Charged interfaces composed of self-assembled charged-molecules such as lipids or proteins are ubiquitous. The present study shows that although charged lipid-membranes are sufficiently rigid, in order to swell as much as possible, they deviate markedly from the behavior of typical like-charged solids when diluted below a critical concentration (ca. 15 wt %). Unexpectedly, they swell into lamellar structures with spacing that is up to four times shorter than the layers should assume (if filling the entire available space). This process is reversible with respect to changing the lipid concentration. Additionally, the research shows that, although the repulsion between charged interfaces increases with temperature, like-charged membranes, remarkably, condense with increasing temperature. This effect is also shown to be reversible. Our findings hold for a wide range of conditions including varying membrane charge density, bending rigidity, salt concentration, and conditions of typical living systems. We attribute the limited swelling and condensation of the net repulsive interfaces to their self-assembled character. Unlike solids, membranes can rearrange to gain an effective entropic attraction, which increases with temperature and compensates for the work required for condensing the bilayers. Our findings provide new insight into the thermodynamics and self-organization of like-charged interfaces composed of self-assembled molecules such as charged biomaterials and supramolecular assemblies that are widely found in synthetic and natural constructs.  相似文献   
313.
314.
Electrophilic peptides that form an irreversible covalent bond with their target have great potential for binding targets that have been previously considered undruggable. However, the discovery of such peptides remains a challenge. Here, we present Rosetta CovPepDock, a computational pipeline for peptide docking that incorporates covalent binding between the peptide and a receptor cysteine. We applied CovPepDock retrospectively to a dataset of 115 disulfide-bound peptides and a dataset of 54 electrophilic peptides. It produced a top-five scoring, near-native model, in 89% and 100% of the cases when docking from the native conformation, and 20% and 90% when docking from an extended peptide conformation, respectively. In addition, we developed a protocol for designing electrophilic peptide binders based on known non-covalent binders or protein–protein interfaces. We identified 7154 peptide candidates in the PDB for application of this protocol. As a proof-of-concept we validated the protocol on the non-covalent complex of 14-3-3σ and YAP1 phosphopeptide. The protocol identified seven highly potent and selective irreversible peptide binders. The predicted binding mode of one of the peptides was validated using X-ray crystallography. This case-study demonstrates the utility and impact of CovPepDock. It suggests that many new electrophilic peptide binders can be rapidly discovered, with significant potential as therapeutic molecules and chemical probes.

We developed Rosetta CovPepDock, a computational pipeline for covalent peptide docking. We showed it is highly accurate in retrospective benchmarks, and applied it prospectively to design potent and selective covalent binders of 14-3-3σ.  相似文献   
315.
In ∼1990 a new source of deep water formation in the Eastern Mediterranean was found in the southern part of the Aegean sea. Till then, the only source of deep water formation in the Eastern Mediterranean was in the Adriatic sea; the rate of the deep water formation of the new Aegean source is 1 Sv, three times larger than the Adriatic source. We develop a simple three-box model to study the stability of the thermohaline circulation of the Eastern Mediterranean sea. The three boxes represent the Adriatic sea, Aegean sea, and the Ionian seas. The boxes exchange heat and salinity and may be described by a set of nonlinear differential equations. We analyze these equations and find that the system may have one, two, or four stable flux states. We conjecture that the change in the deep water formation in the Eastern Mediterranean sea is attributed to a switch between the different states on the thermohaline circulation; this switch may result from decreased temperature and/or increased salinity over the Aegean sea.  相似文献   
316.
We experimentally study anomalous diffusion of ultracold atoms in a one dimensional polarization optical lattice. The atomic spatial distribution is recorded at different times and its dynamics and shape are analyzed. We find that the width of the cloud exhibits a power-law time dependence with an exponent that depends on the lattice depth. Moreover, the distribution exhibits fractional self-similarity with the same characteristic exponent. The self-similar shape of the distribution is found to be well fitted by a Lévy distribution, but with a characteristic exponent that differs from the temporal one. Numerical simulations suggest that this is due to long trapping times in the lattice and correlations between the atom's velocity and flight duration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号