首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20401篇
  免费   2972篇
  国内免费   2871篇
化学   15763篇
晶体学   369篇
力学   913篇
综合类   205篇
数学   2461篇
物理学   6533篇
  2024年   60篇
  2023年   336篇
  2022年   726篇
  2021年   715篇
  2020年   731篇
  2019年   779篇
  2018年   624篇
  2017年   677篇
  2016年   974篇
  2015年   1026篇
  2014年   1310篇
  2013年   1540篇
  2012年   1844篇
  2011年   1906篇
  2010年   1378篇
  2009年   1292篇
  2008年   1507篇
  2007年   1217篇
  2006年   1191篇
  2005年   1012篇
  2004年   845篇
  2003年   674篇
  2002年   736篇
  2001年   533篇
  2000年   378篇
  1999年   382篇
  1998年   275篇
  1997年   189篇
  1996年   214篇
  1995年   186篇
  1994年   154篇
  1993年   120篇
  1992年   105篇
  1991年   123篇
  1990年   100篇
  1989年   83篇
  1988年   44篇
  1987年   48篇
  1986年   43篇
  1985年   36篇
  1984年   26篇
  1983年   23篇
  1982年   13篇
  1981年   16篇
  1980年   8篇
  1979年   7篇
  1978年   7篇
  1977年   6篇
  1976年   7篇
  1975年   4篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
A new oligothiophene-based sensor 3 TH for monitoring Hg2+ has been designed and synthesized based on the intramolecular charge transfer (ICT) mechanism. The 3 TH shows the significant specificity toward Hg2+ through “naked-eye” colorimetric detection as well as via ratiometric fluorescence enhancement response with low detection limit of 62 nM. In addition, sensor 3 TH shows high selectivity and sensitivity for Hg2+ with fast response in a suitable pH range. Moreover, the 3 TH-based test strips was used to conveniently detect Hg2+ ions in water. Furthermore, considering its good ‘‘turn-on’’ fluorescent sensing behavior and low cell cytotoxicity, 3 TH was successfully applied to detect and image Hg2+ in real water samples and living cells, which shows great potentials for application in environmental and biological systems.  相似文献   
992.
Hyphenone A (1), a new type of bicyclic polyprenylated acylphloroglucinols (BPAPs) featured with an unprecedented 3,3-diisoprenylated 1,3,5-trione core, were characterized from the roots of Hypericum henryi together with two new congeners (hyphenones B–C, 23) and five known biosynthetic related PPAPs. Biogenetically, 1 should be derived from a novel 3,3,5,5-tetraisoprenylated MPAPs precursor. Their structures were elucidated by comprehensive spectroscopic data and X-ray diffraction. Moreover, 13 were identified as the first PPAPs type Cav3.1 T-type calcium channel (TTCC) inhibitors, with IC50 values of 7.07, 6.19, and 5.47 μM, respectively.  相似文献   
993.
DNA occupies significant roles in life processes, which include encoding the sequences of proteins and accurately transferring genetic information from generation to generation. Recent discoveries have demonstrated that a variety of biological functions are correlated with DNA′s conformational transitions. The non‐B form has attained great attention among the diverse forms of DNA over the past several years. The main reason for this is that a large number of studies have shown that the non‐B form of DNA is associated with gross deletions, inversions, duplications, translocations as well as simple repeating sequences, which therefore causes human diseases. Consequently, the conformational transition of DNA between the B‐form and the non‐B form is important for biology. Conventional fluorescence probes based on the conformational transitions of DNA usually need a fluorophore and a quencher group, which suffers from the complex design of the structure and tedious synthetic procedures. Moreover, conventional fluorescence probes are subject to the aggregation‐caused quenching (ACQ) effect, which limits their application toward imaging and analyte detection. Fluorogens exhibiting aggregation‐induced emission (AIE) have attracted tremendous attention over the past decade. By taking advantage of this unique behavior, plenty of fluorescent switch‐on probes without the incorporation of fluorescent quenchers/fluorophore pairs have been widely developed as biosensors for imaging a variety of analytes. Herein, the recent progress in bioanalytical applications on the basis of aggregation‐induced emission luminogens (AIEgens)/nucleic acid nanostructures are presented and discussed.  相似文献   
994.
Conversion of CO2 into valuable molecules is a field of intensive investigation with the aim of developing scalable technologies for making fuels using renewable energy sources. While electrochemical reduction into CO and formate are approaching industrial maturity, a current challenge is obtaining more reduced products like methanol. However, literature on the matter is scarce, and even more for the use of molecular catalysts. Here, we demonstrate that cobalt phthalocyanine, a well‐known catalyst for the electrochemical conversion of CO2 to CO, can also catalyze the reaction from CO2 or CO to methanol in aqueous electrolytes at ambient conditions of temperature and pressure. The studies identify formaldehyde as a key intermediate and an unexpected pH effect on selectivity. This paves the way for establishing a sequential process where CO2 is first converted to CO which is subsequently used as a reactant to produce methanol. Under ideal conditions, the reaction shows a global Faradaic efficiency of 19.5 % and chemical selectivity of 7.5 %.  相似文献   
995.
A tetraphenylethene (TPE) derivative substituted with a sulfonyl‐based naphthalimide unit ( TPE‐Np ) was designed and synthesized. Its optical properties in solution and in the solid state were investigated. Photophysical properties indicated that the target molecule, TPE‐Np , possessed aggregation‐induced emission (AIE) behavior, although the linkage between TPE and the naphthalimide unit was nonconjugated. Additionally, it exhibited an unexpected, highly reversible mechanochromism in the solid state, which was attributed to the change in manner of aggregation between crystalline and amorphous states. On the other hand, a solution of TPE‐Np in a mixture of dimethyl sulfoxide/phosphate‐buffered saline was capable of efficiently distinguishing glutathione (GSH) from cysteine and homocysteine in the presence of cetyltrimethylammonium bromide. Furthermore, the strategy of using poly(ethylene glycol)–polyethylenimine (PEG‐PEI) nanogel as a carrier to cross‐link TPE‐Np to obtain a water‐soluble PEG‐PEI/ TPE‐Np nanoprobe greatly improved the biocompatibility, and this nanoprobe could be successfully applied in the visualization of GSH levels in living cells.  相似文献   
996.
C. elegans is a popular model organism with a well‐developed neural network. Approximately 60% of the genes in C. elegans have genomic counterparts in humans, including those involved in building neural circuits. Therefore, we can extend the study of human neural network mechanisms to C. elegans which is easy to genetically manipulate. C. elegans shows behavioural responses to various external physical and chemical stimuli. Electrotaxis is one of its distinct behavioural responses, which is defined as movement towards the cathode in an electric field. In this study, we developed an effective microfluidic trap system for analysing electrotaxis in C. elegans. In addition, two mutant strains (unc‐54(s74) and unc‐6(e78)) from wild‐type (N2) worms were screened using the system. Wild‐type (N2) worms and the two mutant strains clearly showed different behavioural responses to the applied electric field, thus enabling the effective screening of the mutant worms from the wild type (N2). This microfluidic system can be utilized as a platform for the study of behavioural responses, and for the sorting and mutant screening of C. elegans.  相似文献   
997.
A radical‐mediated monofluoroalkylative alkynylation of alkenes is disclosed for the first time. The reaction demonstrates a remarkably broad substrate scope in which both activated and unactivated alkenes are suitable starting materials. The concurrent addition of an alkynyl and a monofluoroalkyl group onto an alkene proceeds through a docking–migration sequence, affording a vast array of valuable fluoroalkyl‐substituted alkynes. Many complex natural products and drug derivatives are readily functionalized, demonstrating that this method can be used for late‐stage alkynylation.  相似文献   
998.
999.
The hydrothermal reaction of Zn2+ ions with a mixture of two ligands, Hcptpy and H3btc (Hcptpy=4‐(4‐carboxyphenyl)‐2,2′:4′,4′′‐terpyridine; H3btc=1,3,5‐benzenetricarboxylic acid), led to the formation of a 3D metal–organic framework (MOF) with 1D channels, [Zn2(cptpy)(btc)(H2O)]n ( 1 ), which was structurally characterized by using single‐crystal X‐ray diffraction (SXRD). In MOF 1 , two independent Zn2+ ions were interconnected by btc3? ligands to form a 1D chain, whilst adjacent Zn2+ ions were alternately bridged by cptpy? ligands to generate a 2D sheet, which was further linked by 1D chains to form a 3D framework with a new (3,3,4,4)‐connected topology. Furthermore, compound 1 also exhibited excellent stability towards air and water and, more importantly, luminescence experiments indicated that it could serve as a probe for the sensitive detection of paraquat (PAQ) and Fe3+ ions in aqueous solution.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号