首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30712篇
  免费   5165篇
  国内免费   4345篇
化学   23362篇
晶体学   374篇
力学   1782篇
综合类   389篇
数学   3552篇
物理学   10763篇
  2024年   67篇
  2023年   556篇
  2022年   759篇
  2021年   938篇
  2020年   1178篇
  2019年   1214篇
  2018年   997篇
  2017年   993篇
  2016年   1432篇
  2015年   1469篇
  2014年   1720篇
  2013年   2223篇
  2012年   2723篇
  2011年   2866篇
  2010年   2005篇
  2009年   1891篇
  2008年   2109篇
  2007年   1894篇
  2006年   1866篇
  2005年   1599篇
  2004年   1234篇
  2003年   1100篇
  2002年   1140篇
  2001年   893篇
  2000年   736篇
  1999年   658篇
  1998年   480篇
  1997年   442篇
  1996年   456篇
  1995年   363篇
  1994年   314篇
  1993年   255篇
  1992年   236篇
  1991年   223篇
  1990年   169篇
  1989年   158篇
  1988年   104篇
  1987年   96篇
  1986年   103篇
  1985年   79篇
  1984年   62篇
  1983年   53篇
  1982年   37篇
  1981年   37篇
  1980年   33篇
  1978年   24篇
  1977年   27篇
  1976年   23篇
  1974年   22篇
  1973年   30篇
排序方式: 共有10000条查询结果,搜索用时 343 毫秒
921.
Yi  Long  Zhu  Li-Na  Ding  Bin  Cheng  Peng  Liao  Dai-Zheng  Zhai  Yu-Ping  Yan  Shi-Ping  Jiang  Zong-Hui 《Transition Metal Chemistry》2004,29(2):200-204
Two novel complexes, [Cu(HL)2(H2O)]2(OH)2(ClO4)2·1.5H2O (1) and [Cu(HL)2]Cl2·4H2O (2), have been prepared by reacting copper salts with the 4-amino-3-ethyl-1,2,4-triazole-5-thione (HL) ligand in neutral solution and in HCl (6 mol L–1) medium, respectively. They were characterized by FT-IR and u.v.–vis. spectra, and the structures were determined by single crystal X-ray diffraction techniques. In both complexes, the triazole ligand chelated the metal ions through the amine and thione substituents on the five-membered ring. Complex (1) has a square-pyramidal copper(II) ion coordinated by two triazole ligands and one water molecule. Unlike (1), the Cu2+ ion in (2) displays its characteristic Jahn–Teller distortion with the distance of the Cl anions to metal ion further away than that of the triazole ligands. The most intriguing structural features of the title complexes are that the HL ligands chelate copper(II) ions through the N(1) and S(1) atoms, in a cis mode in (1) and a trans mode in (2). In both cases, self-assembled crystals, by supramolecular contacts simultaneously, form two multi-dimensional frameworks.  相似文献   
922.
Time-resolved adsorption behavior of a human immunoglobin G (hIgG) protein on a hydrophobized gold surface is investigated using multitechniques: quartz crystal microbalance/dissipation (QCM-D) technique; combined surface plasmon resonance (SPR) and Love mode surface acoustic wave (SAW) technique; combined QCM-D and atomic force microscopy (AFM) technique. The adsorbed hIgG forms interfacial structures varying in organization from a submonolayer to a multilayer. An "end-on" IgG orientation in the monolayer film, associated with the surface coverage results, does not corroborate with the effective protein thickness determined from SPR/SAW measurements. This inconsistence is interpreted by a deformation effect induced by conformation change. This conformation change is confirmed by QCM-D measurement. Combined SPR/SAW measurements suggest that the adsorbed protein barely contains water after extended contact with the hydrophobic surface. This limited interfacial hydration also contributed to a continuous conformation change in the adsorbed protein layer. The viscoelastic variation associated with interfacial conformation changes induces about 1.5 times overestimation of the mass uptake in the QCM-D measurements. The merit of combined multitechnique measurements is demonstrated.  相似文献   
923.
As part of a continuing investigation of the topological control of intramolecular electron transfer (ET) in donor-acceptor systems, a symmetrical parachute-shaped octaethylporphyrin-fullerene dyad has been synthesized. A symmetrical strap, attached to ortho positions of phenyl groups at opposing meso positions of the porphyrin, was linked to [60]-fullerene in the final step of the synthesis. The dyad structures were confirmed by (1)H, (13)C, and (3)He NMR, and MALDI-TOF mass spectra. The free-base and Zn-containing dyads were subjected to extensive spectroscopic, electrochemical and photophysical studies. UV-vis spectra of the dyads are superimposable on the sum of the spectra of appropriate model systems, indicating that there is no significant ground-state electronic interaction between the component chromophores. Molecular modeling studies reveal that the lowest energy conformation of the dyad is not the C(2)(v)() symmetrical structure, but rather one in which the porphyrin moves over to the side of the fullerene sphere, bringing the two pi-systems into close proximity, which enhances van der Waals attractive forces. To account for the NMR data, it is proposed that the dyad is conformationally mobile at room temperature, with the porphyrin swinging back and forth from one side of the fullerene to the other. The extensive fluorescence quenching in both the free base and Zn dyads is associated with an extremely rapid photoinduced electron-transfer process, k(ET) approximately 10(11) s(-)(1), generating porphyrin radical cations and C(60) radical anions, detected by transient absorption spectroscopy. Back electron transfer (BET) is slower than charge separation by up to 2 orders of magnitude in these systems. The BET rate is slower in nonpolar than in polar solvents, indicating that BET occurs in the Marcus inverted region, where the rate decreases as the thermodynamic driving force for BET increases. Transient absorption and singlet molecular oxygen sensitization data show that fullerene triplets are formed only with the free base dyad in toluene, where triplet formation from the charge-separated state is competitive with decay to the ground state. The photophysical properties of the P-C(60) dyads with parachute topology are very similar to those of structurally related rigid pi-stacked P-C(60) dyads, with the exception that there is no detectable charge-transfer absorption in the parachute systems, attributed to their conformational flexibility. It is concluded that charge separation in these hybrid systems occurs through space in unsymmetrical conformations, where the center-to-center distance between the component pi-systems is minimized. Analysis of the BET data using Marcus theory gives reorganization energies for these systems between 0.6 and 0.8 eV and electronic coupling matrix elements between 4.8 and 5.6 cm(-)(1).  相似文献   
924.
It is shown that azulene ( 1 ) and dimethyl acetylenedicarboxylate (ADM) in a fourfold molar excess react at 200° in decalin to yield, beside the known heptalene- ( 5 ) and azulene-1,2-dicarboxylates ( 6 ), in an amount of 1.6% tetramethyl (1RS,2RS,5SR,8RS)-tetracyclo[6.2.2.22,501,5]tetradeca-3,6,9,11,13-pentaene-3,4,9,10-tetracarboxylate(‘anti’-7) as a result of a SHOMO (azulene)/LUMO(ADM)-controlled addition of ADM to the seven-membered ring of 1 followed by a Diels-Alder reaction of the so formed tricyclic intermediate 16 (cf. Scheme 3) with a second molecule of ADM. The structure of ‘anti’-7 was confirmed by an X-ray diffraction analysis. Similarly, the thermal reaction of 5,7-dimehtylazulene ( 3 ) with excess ADM in decalin at 120° led to the formation of ca. 1% of ‘anti’- 12 , the 7,12-dimethyl derivative of‘anti’-7, beside of the corresponding heptalene- 10 and azulene-1,2-dicaboxylated (cf Scheme 2). The introduction of Me groups at C(1)and C(3)of azulene ( 1 ) and its 5,7-dimethyl derivative 3 strongly enhance the thermal formation of the corresponding tetracyclic compound. Thus, 1,3-dimethylazulene ( 2 ) in the presence of a sevenfold molar excess of ADM at 200° yielded 20% of ‘anti’- 9 beside an equal amount of dimethyl 3-mehtylazulene-1,2-dicarboxylate ( 8 ;cf. Scheme 1), and 1,3,5,7-tetramethylazulene ( 4 ) with a fourfold molar excess of ADM AT 200° gave a yield of 37% of‘anti’- 15 beside small amount of the corresponding heptalene- 13 and azulene-1,2-dicarboxylates 14 (cf.Scheme 2).  相似文献   
925.
To analyze unbound cefamandole in rat blood, a method combing microdialysis with microbore liquid chromatography has been developed. A microdialysis probe was inserted into the jugular vein/right atrium of male Sprague-Dawley rats to examine the unbound cefamandole level in the rat blood following cefamandole administration (50 mg/kg, i.v.). The dialysates were directly submitted to a liquid chromatographic system. Samples were eluted with a mobile phase containing acetonitrile-methanol-100 mM monosodium phosphate (pH 5.0; 15:20:65, v/v). The UV wavelength was set at 270 nm for monitoring the analyte. Using the retrograde method, at infusion concentrations of 1 microg/mL of cefamandole, the in vivo microdialysis recoveries were 55.44% for the rat blood (n = 6). Intra- and inter-assay accuracy and precision of the analyses were < or = 10% in the range of 0.1-10 microg/mL. Pharmacokinetic parameters were calculated from the recovery-corrected dialysate concentrations of cefamandole vs time data. The elimination half-life (t1/2,beta) was 21.6 +/- 1.6 min. The results suggest that the pharmacokinetics of unbound cefamandole in blood following cefamandole administration (50 mg/kg, i.v., n = 5) fit best to the two-compartmental model.  相似文献   
926.
Polyaniline(PAN) supported H6P2W18O62(PW) , H3PMo12O40 (PMo) and H4PMo11VO40(PMoV) catalysts were prepared and their activities for hexanol conversion were tested. IR, XRD, ICP and SEM measurements proved that the heteropolyacids (HPA) could be supported on this type of polymer. The PAN supported HPA catalysts exhibit higher redox activities and low acid-base activities for the hexanol conversion. The redox activities increase with increasing amount of the heteropolyacid. Substitution of Mo ion by V ion results in an increase of redox activities of the catalysts. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
927.
1,3-Propanediol (1,3-PD) has numerous applications from polymers to cosmetics, foods, lubricants, and medicines. Recently, there are strong industrial interests in a new kind of polyester, polytrimethylene terephthalate, with 1,3-PD as a monomer. This new polyester shows significant promise for use in carpeting and textiles. In this article we introduce a mild aerobic fermentation process using a strain screened from Klebsiella pneumoniae ATCC 25955, which is insensitive to oxygen, to produce 1,3-PD. We also describe a two-step fermentation process starting with glucose that was converted into glycerol with a glycerol-producing yeast, followed by K. pneumoniae that converts glycerol into 1,3-PD without intermediate isolation and purification of glycerol.  相似文献   
928.
An in situ reaction under hydro­thermal conditions leads to the formation of the title compound, diaqua­(pyridine‐2‐carboxyl­ato)­(pyridine‐2,6‐dicarboxyl­ato)indium(II) trihydrate, [In(C6H4NO2)(C7H3NO4)(H2O)2]·3H2O, in which the central InIII atom is seven‐coordinated by one pyridine‐2,6‐di­carboxyl­ate ligand, one pyridine‐2‐carboxyl­ate ligand and two water mol­ecules in a penta­gonal–bipyramidal coordination environment. An indium(III)–water chain based on an unusual water pentamer is observed.  相似文献   
929.
Summary The oxidation of hexanol in the presence of the Keggin-type heteropoly compounds (HPCs) H3PMonW12-nO40 (denoted as PMonW12-n, n=0,1) and Na5PW11ZO39 (denoted as PW11Z, Z = Mn, Fe, Co, Ni, Cu and Zn) was carried out to produce hexanal and hexanoic acid. The reaction was conducted in tert-butanol (t-BuOH), using cetylpyridinium bromide (CPB) salts of HPA and 15% aqueous H2O2 as oxidant under mild condition. The PMoW11 catalyst showed higher hexanol conversion of 25%, the lowest selectivity to hexanal of 64.4% and an efficient utilization of H2O2 of 34%. Over the transition metal substituted PW11Z catalysts decomposition of H2O2 was rapid. For these PW11Z catalysts, the efficient utilization of H2O2 decreased to 9% or even lower. By means of IR, UV-visible and GC-MS techniques the catalysts were characterized.  相似文献   
930.
Nicotinamide adenine dinucleotide is an important coenzyme involved in the production of ATP, the fuel of energy, in every cell. It alternates between the oxidized form NAD(+) and the reduced form dihydronicotinamide adenine dinucleotide (NADH) and serves as a hydrogen and electron carrier in the cellular respiratory processes. In the present work, the catalytic effect of gold nanoparticles on the oxidization of NADH to NAD(+) was investigated. The addition of gold nanoparticles was found to quench the NADH fluorescence intensities but had no effect on the fluorescence lifetime. This suggested that the fluorescence quenching was not due to coupling with the excited state, but due to changing the ground state of NADH. The intensity of the 340 nm absorption band of NADH was found to decrease while that of the 260 nm band of NAD(+) was found to increase as the concentration of gold nanoparticles increased. This conversion reaction was further supported by nuclear magnetic resonance and mass spectroscopy. The effect of the addition of NADH was found to slightly red shift and increase the intensity of the surface plasmon absorption band of gold nanoparticles at 520 nm. This gives a strong support that the conversion of NADH to NAD(+) is occurring on the surface of the gold nanoparticles, i.e. NADH is surface catalyzed by the gold nanoparticles. The catalytic property of this important reaction might have important future applications in biological and medical fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号