首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   582篇
  免费   32篇
  国内免费   15篇
化学   359篇
力学   55篇
数学   93篇
物理学   122篇
  2024年   2篇
  2023年   1篇
  2022年   9篇
  2021年   30篇
  2020年   29篇
  2019年   30篇
  2018年   29篇
  2017年   37篇
  2016年   39篇
  2015年   22篇
  2014年   44篇
  2013年   75篇
  2012年   64篇
  2011年   53篇
  2010年   43篇
  2009年   26篇
  2008年   15篇
  2007年   21篇
  2006年   10篇
  2005年   6篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   3篇
  1979年   2篇
  1977年   5篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1972年   1篇
排序方式: 共有629条查询结果,搜索用时 31 毫秒
41.
The potential removal and preconcentration of lead(II), cadmium(II), and chromium(III) ions from wastewaters were investigated and explored. Magnetite nanoparticles were chemically modified with p-nitro aniline. The aniline-coated magnetite nanoparticles (ANMNPs) were fully characterized by FT-IR, XRD, SEM, and TEM measurements. Batch studies were performed to address various experimental parameters for the removal and determination of these ions. ANMNPs showed high tendency to investigated metal ions, in this order: Cr(III) > Cd(II) > Pb(II), owing to the strong contribution of surface loaded aniline. The potential applications of ANMNPs adsorbent for removal and preconcentration of Pb(II), Cr(III), and Cd(II) from wastewaters as well as drinking tap water samples were successfully accomplished giving recovery values of (98–101 %), without any noticeable interference of the wastewater or drinking tap water matrices.  相似文献   
42.
In recent years, fullerene nanoparticles have received extensive attention due to their unique physical and chemical properties. Properly modified fullerene nanoparticles have excellent biocompatibility and significant anti-tumor activity and anti-depression, which makes them have broad application prospects in the field of cancer anti-depression. The present study used the density functional theory (DFT) calculations to perform a theoretical examination of the interaction of fluoxetine (F) as medicine with the functionalized fullerene O and NO (F–O and F–NO surface in gas phase physiological media. According to DFT calculations, adsorption energies were ?3396.6350645, ?3540.2952907, ?6778.526894, and ?6952.251487 kJ for F/P complexes (fullerene O and NO (F–O and F–NO surface) respectively, proposing the possibility of the adsorption process of F molecule onto the fullerene surface concerning the energetic perspective. Calculations of electronic parameters aimed at determining the molecule's reactivity. Bandgap of F–O and F–NO were 0.03715, 0.04328 respectively, by this value we can recognize the reactivity of complexes.  相似文献   
43.
Journal of Thermal Analysis and Calorimetry - The present paper deals with the economic viability of a coal-fired power plant (CFPP) situated in the northern part of India. The plant with a...  相似文献   
44.
This study is aimed at atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) using a novel catalyst. The bis-(2-dodecylsulfanyl-ethyl)-amine (SNS) tridentate ligand with mixed donor atoms was synthesized in high purity using inexpensive reagents and was reacted with copper(I) bromide to produce the CuBr/SNS catalyst. The catalyst mediated living polymerization of MMA yielding polymers with controlled molecular masses and narrow molecular mass distributions (PDI < 1.25). Also, the kinetic plot exhibited a linear increase of ln([M]0/[M]) versus time, indicating constant concentration of propagating radicals during the polymerization. The products were characterized by 1H NMR, 13C NMR, FT-IR, UV-VIS, GC and elemental analyses (CHNS) and by GPC.  相似文献   
45.
Alanine is used as a transfer standard dosimeter for gamma ray and electron beam calibration. An important factor affecting its dosimetric response is humidity which can lead to errors in absorbed dose calculations. Ab initio molecular dynamics calculations were performed to determine the environmental effects on the electron paramagnetic resonance (EPR) parameters of L-α-alanine radicals in acidic and alkaline solutions. A new result, not dissimilar to the closed-shell amino acid molecule alanine, is that the non-zwitterionic form of the alanine radical is the stable form in the gas phase while the zwitterionic neutral alanine radical is not a stable structure in the gas phase. Geometric and EPR parameters of radicals in both gas and solution phases are found to be dependent on hydrogen bonding of water molecules with the polar groups and on dynamic solvation. Calculations on the optimized free radicals in the gas phase revealed that for the neutral radical, hydrogen bonding to water molecules drives a decrease in the magnitudes of g-tensor components g xx and g yy without affecting neither g zz component nor the hyperfine coupling constants (HFCCs). The transfer from the gas to solution phase of the alanine radical anion is accompanied with an increase in the spin density on the carboxylic group's oxygen atoms. However, for the neutral radical, this transfer from gas to solution phase is accompanied with the decrease in the spin density on oxygen atoms. Calculated isotropic HFCCs and g-tensor of all radicals are in good agreement with experiment in both acidic and alkaline solutions.  相似文献   
46.
Three‐dimensional (3D) printing becomes an attractive technique to fabricate tissue engineering scaffolds through its high control on fabrication and repeatability using the printing parameters. This technique can be combined by the finite element method (FEM), and tissue‐specific scaffolds with desirable morphological and mechanical properties can be designed and manufactured. In this study, the influential 3D printing parameters on the morphological and mechanical properties of polycaprolactone (PCL) filament and scaffold were studied experimentally and numerically. First, the effects of printing parameters and process on the properties of extruded PCL filament were investigated. Then, using FEM, the effects of filament specifications on the overall characteristics of the scaffold were evaluated. Results showed that both the printing process in terms of resting time and remaining time and the printing parameters like pressure, printing speed, and printing path length have influenced the filament properties. In addition, both the filament diameter and elastic modulus had significant effects on the properties of scaffold especially, a 20% increase in the filament diameter caused the scaffold compressive elastic modulus to rise by around 72%. It is concluded that the printing parameters and process must be tuned very well in fabricating scaffolds with the desired morphology and mechanical property.  相似文献   
47.
An antiviral agent is urgently needed based on the high probability of the emergence and re-emergence of future viral disease, highlighted by the recent global COVID-19 pandemic. The emergence may be seen in the discovery of the Alpha, Beta, Gamma, Delta, and recently discovered Omicron variants of SARS-CoV-2. The need for strategies besides testing and isolation, social distancing, and vaccine development is clear. One of the strategies includes searching for an antiviral agent that provides effective results without toxicity, which is well-presented by significant results for carrageenan nasal spray in providing efficacy against human coronavirus-infected patients. As the primary producer of sulfated polysaccharides, marine plants, including macro- and microalgae, offer versatility in culture, production, and post-isolation development in obtaining the needed antiviral agent. Therefore, this review will describe an attempt to highlight the search for practical and safe antiviral agents from algal-based sulfated polysaccharides and to unveil their features for future development.  相似文献   
48.
The single electron transistor (SET) is a nanoscale switching device with a simple equivalent circuit. It can work very fast as it is based on the tunneling of single electrons. Its nanostructure contains a quantum dot island whose material impacts on the device operation. Carbon allotropes such as fullerene (C60), carbon nanotubes (CNTs) and graphene nanoscrolls (GNSs) can be utilized as the quantum dot island in SETs. In this study, multiple quantum dot islands such as GNS-CNT and GNS-C60 are utilized in SET devices. The currents of two counterpart devices are modeled and analyzed. The impacts of important parameters such as temperature and applied gate voltage on the current of two SETs are investigated using proposed mathematical models. Moreover, the impacts of CNT length, fullerene diameter, GNS length, and GNS spiral length and number of turns on the SET’s current are explored. Additionally, the Coulomb blockade ranges (CB) of the two SETs are compared. The results reveal that the GNS-CNT SET has a lower Coulomb blockade range and a higher current than the GNS-C60 SET. Their charge stability diagrams indicate that the GNS-CNT SET has smaller Coulomb diamond areas, zero-current regions, and zero-conductance regions than the GNS-C60 SET.  相似文献   
49.
Germanane (GeH), a germanium analogue of graphane, has recently attracted considerable interest because its remarkable combination of properties makes it an extremely suitable candidate to be used as 2D material for field effect devices, photovoltaics, and photocatalysis. Up to now, the synthesis of GeH has been conducted by substituting Ca by H in a β‐CaGe2 layered Zintl phase through topochemical deintercalation in aqueous HCl. This reaction is generally slow and takes place over 6 to 14 days. The new and facile protocol presented here allows to synthesize GeH at room temperature in a significantly shorter time (a few minutes), which renders this method highly attractive for technological applications. The GeH produced with this method is highly pure and has a band gap (Eg) close to 1.4 eV, a lower value than that reported for germanane synthesized using HCl, which is promising for incorporation of GeH in solar cells.  相似文献   
50.
在金纳米粒子(AuNPs)上经苯硫酚衍生物(3,4二羟基苯基-偶氮-苯硫酚, DAT)自组装制得了一种新型纳米复合物,用于修饰玻璃碳电极(GCE/AuNP-DAT).采用循环伏安法研究了该新型电极的性质,并将其用作异丙肾上腺素(IP)电催化剂,考察了该纳米复合物的电催化活性,从而得到反应机理和催化反应速率常数.由于GCE/AuNP-DAT电极对尿酸氧化没有电催化活性,因此可将IP的氧化信号从该改进电极中分离出来,从而排除了尿酸对IP测定的干扰.该电极可作为传感器,当用于差动脉冲伏安法测定IP时,线性动态范围为1.0–1500.0μmol/L,检测极限为0.46μmol/L.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号