首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23653篇
  免费   3836篇
  国内免费   2611篇
化学   16646篇
晶体学   296篇
力学   1420篇
综合类   239篇
数学   2658篇
物理学   8841篇
  2024年   40篇
  2023年   492篇
  2022年   622篇
  2021年   749篇
  2020年   978篇
  2019年   888篇
  2018年   740篇
  2017年   709篇
  2016年   1074篇
  2015年   988篇
  2014年   1239篇
  2013年   1626篇
  2012年   2051篇
  2011年   2076篇
  2010年   1427篇
  2009年   1369篇
  2008年   1533篇
  2007年   1404篇
  2006年   1344篇
  2005年   1086篇
  2004年   869篇
  2003年   722篇
  2002年   623篇
  2001年   519篇
  2000年   513篇
  1999年   590篇
  1998年   487篇
  1997年   428篇
  1996年   436篇
  1995年   388篇
  1994年   357篇
  1993年   325篇
  1992年   269篇
  1991年   229篇
  1990年   235篇
  1989年   159篇
  1988年   119篇
  1987年   84篇
  1986年   97篇
  1985年   65篇
  1984年   37篇
  1983年   39篇
  1982年   37篇
  1981年   21篇
  1980年   8篇
  1979年   4篇
  1976年   1篇
  1957年   4篇
排序方式: 共有10000条查询结果,搜索用时 32 毫秒
981.
The copper-based catalysts have been generally regarded as high-performance catalysts for CO_2 hydrogenation toward methanol,while the production of ethanol via C–C coupling on the copper-based catalysts is still challenging. Herein, we report a new catalyst where Cu nanoparticles are embedded in the carbon support with abundant defect sites, achieving a high selectivity for ethanol in the CO_2 hydrogenation. The experiments coupled with the theoretical studies show a clear map where carbon defects serve as anchor sites that can stabilize interfacial copper species, and interfacial Cu sites with low coordination numbers can adsorb two C_1 species and later convert them to a C_2 species via a hydrogenation-induced coupling reaction. Further adjacent Cu atoms of interfacial Cu sites can facilitate OH reduction reactions via the Cu–Cu bridge adsorption to assist the formation of ethanol. Especially, those specific active sites easily disappear in the reducing conditions and during the reaction, the major product can transform from ethanol to methanol.  相似文献   
982.
As a hot topic of global concern, the distinguishing and detecting of antibiotic pollution is crucial owing to its adverse effect on ecosystems and human health stemming from excessive use and poor management. Herein, a water-stable lanthanide coordination polymer sensor (Dy-TCPB) with multiple emitting centers is prepared. The versatile Dy-TCPB can conveniently differentiate various antibiotics, and displays a self-calibration luminescent response to nitrofurazone (NFZ) and furazolidone (FZD). Each antibiotic exhibits notable correlation to a unique combination of the two ligand-to-Dy ion emission intensity ratios, enabling two-dimensional fingerprint recognition. Furthermore, the novel self-calibration sensor demonstrates effective recognition of NFZ and FZD with excellent sensitivity and selectivity, and detection limits as low as 0.0476 and 0.0482 μm for NFZ and FZD, respectively. The synthetic approach for the fabrication of a singular coordination polymer exhibiting multiple emissions provides a promising strategy for the development of facile and effective ratiometric sensors.  相似文献   
983.
Prion-like transcellular spreading of tau in Alzheimer's Disease (AD) is mediated by tau binding to cell surface heparan sulfate (HS). However, the structural determinants for tau–HS interaction are not well understood. Microarray and SPR assays of structurally defined HS oligosaccharides show that a rare 3-O-sulfation (3-O-S) of HS significantly enhances tau binding. In Hs3st1−/− (HS 3-O-sulfotransferase-1 knockout) cells, reduced 3-O-S levels of HS diminished both cell surface binding and internalization of tau. In a cell culture, the addition of a 3-O-S HS 12-mer reduced both tau cell surface binding and cellular uptake. NMR titrations mapped 3-O-S binding sites to the microtubule binding repeat 2 (R2) and proline-rich region 2 (PRR2) of tau. Tau is only the seventh protein currently known to recognize HS 3-O-sulfation. Our work demonstrates that this rare 3-O-sulfation enhances tau–HS binding and likely the transcellular spread of tau, providing a novel target for disease-modifying treatment of AD and other tauopathies.  相似文献   
984.
For a general dyadic grid, we give a Calderón–Zygmund type decomposition, which is the principle fact about the multilinear maximal function on the upper half‐spaces. Using the decomposition, we study the boundedness of . We obtain a natural extension to the multilinear setting of Muckenhoupt's weak‐type characterization. We also partially obtain characterizations of Muckenhoupt's strong‐type inequalities with one weight. Assuming the reverse Hölder's condition, we get a multilinear analogue of Sawyer's two weight theorem. Moreover, we also get Hytönen–Pérez type weighted estimates.  相似文献   
985.
We report in this article a cascade reaction strategy for the synthesis of complex N-heterocyclic compounds with contiguous and tetrasubstituted stereogenic carbons. Under the sequential catalysis of a chiral binol–Ti complex and BF3, cyclopentanone-derived tertiary enamides undergo an enantioselective enamine addition to ketone carbonyls followed by diastereoselective trapping of the resulting acyliminiums by electron-rich aryl moieties to furnish four- and five-membered ring-fused N-heterocyclic products as the sole diastereomers in high yields with up to 99 % ee.  相似文献   
986.
987.
Russian Journal of Coordination Chemistry - Two new dioxomolybdenum(VI) complexes, [MoO2L(EtOH)] (I) and [MoO2L(Sal)] (II), where L is the dianionic form of...  相似文献   
988.
Zeolitic octahedral metal oxides are inorganic crystalline microporous materials with adsorption and redox properties. New ϵ-Keggin nickel molybdate–based zeolitic octahedral metal oxides have been synthesized. 31P NMR spectroscopy shows that reduction of MoVI-based molybdates forms an ϵ-Keggin polyoxometalate that immediately transfers to the solid phase. Investigation of the formation process indicates that a low Ni concentration, insoluble reducing agent, and long synthesis time are the critical factors for obtaining the zeolite octahedral metal oxides rather than the ϵ-Keggin polyoxometalate molecule. The synthesized zeolitic nickel molybdate with Na+ is used as the adsorbent, which effectively separates C2 hydrocarbon mixtures.  相似文献   
989.
Ligand-promoted copper-catalyzed cascade reactions have become a robust tool for the synthesis of cyclic compounds. Although numerous ligands have been developed, this review focuses on the introduction of commercially available 1,10-phenanthroline-promoted copper-catalyzed cascade reactions in recent years. Moreover, based on original articles, this review highlights product yields in the presence and absence of the ligand, and the possible mechanistic role of the ‘copper/1,10-phenanthroline’ catalytic system.  相似文献   
990.
Light hydrocarbons (C1–C3) are used as basic energy feedstocks and as commodity organic compounds for the production of many industrially necessary chemicals. Due to the nature of the raw materials and production processes, light hydrocarbons are generated as mixtures, but the high-purity single-component products are of vital importance to the petrochemical industry. Consequently, the separation of these C1–C3 products is a crucial industrial procedure that comprises a significant share of the total global energy consumption per year. As a complement to traditional separation methods (distillation, partial hydrogenation, etc.), adsorptive separations using porous solids have received widespread attention due to their lower energy costs and higher efficiency. Extensive research has been devoted to the use of porous materials such as zeolites and metal-organic frameworks (MOFs) as solid adsorbents for these key separations, owing to the high porosity, tunable pore structures, and unsaturated metal sites present in these materials. Recently, porous organic framework (POF) materials composed of organic building blocks linked by covalent bonds have also shown excellent properties in light hydrocarbon adsorption and separation, sparking interest in the use of these materials as adsorbents in separation processes. This Minireview summarizes the recent advances in the use of POFs for light hydrocarbon separations, including the separation of mixtures of methane/ethane, methane/propane, ethylene/ethane, acetylene/ethylene, and propylene/propane, while highlighting the relationships between the structural features of these materials and their separation performances. Finally, the difficulties, challenges, and opportunities associated with leveraging POFs for light hydrocarbon separations are discussed to conclude the review.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号