首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21218篇
  免费   4065篇
  国内免费   3194篇
化学   15630篇
晶体学   301篇
力学   1318篇
综合类   302篇
数学   2605篇
物理学   8321篇
  2024年   38篇
  2023年   372篇
  2022年   595篇
  2021年   692篇
  2020年   887篇
  2019年   877篇
  2018年   742篇
  2017年   723篇
  2016年   993篇
  2015年   1052篇
  2014年   1289篇
  2013年   1602篇
  2012年   1942篇
  2011年   2072篇
  2010年   1493篇
  2009年   1501篇
  2008年   1604篇
  2007年   1393篇
  2006年   1312篇
  2005年   1091篇
  2004年   912篇
  2003年   692篇
  2002年   706篇
  2001年   601篇
  2000年   469篇
  1999年   421篇
  1998年   333篇
  1997年   339篇
  1996年   289篇
  1995年   243篇
  1994年   226篇
  1993年   164篇
  1992年   114篇
  1991年   129篇
  1990年   111篇
  1989年   77篇
  1988年   75篇
  1987年   66篇
  1986年   46篇
  1985年   34篇
  1984年   29篇
  1983年   28篇
  1982年   27篇
  1981年   18篇
  1980年   16篇
  1979年   6篇
  1976年   6篇
  1975年   8篇
  1959年   5篇
  1957年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
The cage‐like complex, Ag4L4(NO3)4 ( 1 ) [L = 1, 4‐bis(pyridine‐2‐ylmethoxy)benzene] was synthesized by the reaction of the flexible bidentate ligand and silver nitrate. It was characterized by elemental analysis, IR spectroscopy, TG, and single‐crystal X‐ray analysis. Complex 1 is reported as the first cage‐like cluster constructed by four nitrate anions bridging two [2+2] macrocycles. A blue luminescent emission and luminescent enhancement effect are observed in complex 1 .  相似文献   
962.
Adsorption is an effective treatment process for removing phosphorus and thus controlling eutrophication. In this study, a clay composite material called Al–dolomite–montmorillonite (Al–DM) was prepared and characterized. Al–DM performed well with respect to phosphate removal, with its performance depending on the Al–DM loading, contact time, initial phosphorus concentration and initial solution pH. Adsorption mechanisms were investigated by conducting batch tests on phosphate adsorption using the Al–DM. The adsorption process fitted both the pseudo-second-order kinetics model and the intra-particle diffusion model. The Langmuir, Freundlich and BET models all adequately described the adsorption isotherm data. Thermodynamic studies showed that the adsorption process was endothermic and spontaneous in nature. Al–DM is an effective adsorbent for phosphate removal mainly due to its hierarchical porous structures as shown by characterization with SEM and EDS. Chemical changes occurring before and after adsorption in a water environment indicated that Al–DM had little negative effect on water quality.  相似文献   
963.
Quinoline bridged imidazolium precursors 5,8‐bis(NR‐imidazolylidenylmethylene)quinoline PF6 salts [H2L](PF6)2 [R = Me ( 1a ), R = naphthylmethyl ( 1b )] were prepared by quaternization of N‐methylimidazole and N‐naphthylmethylimidazole with 5,8‐bis(bromomethyl)quinoline, respectively. Reaction of the imidazolium ligands 1a and 1b with Hg(OAc)2 and Ag2O in acetonitrile gave the macrocyclic transition metal carbene complexes [Hg2L2](PF6)4 ( 2a and 2b ) and [Ag2L2](PF6)2 ( 3a and 3b ), respectively. All the N‐heterocyclic carbene complexes were characterized in detail by NMR, ESI‐MS, and elemental analysis. Structures of complexes 2a and 3a were determined by X‐ray diffraction studies. Structural studies revealed that the coordination arrangement of the central mercury atom in complex 2a displays a tricoordinate mode and the molecular conformation results in a“closed” form with the bridging quinoline functionality in the macrocycle, whereas the silver complex 3a does not show an coordiantion between the bridging quinoline and the AgI ion, which results in an “open” conformation of the macrocycle. The HgII and AgI NHC complexes showed similar UV absorption and luminescence in acetonitrile solutions.  相似文献   
964.
A simple and economical CE method has been developed for the analysis of four model basic proteins by employing N‐methyl‐2‐pyrrolidonium methyl sulfonate ionic liquid (IL) as the dynamic coating material based on the interaction of both between electrostatic attraction and hydrogen bond, and between the organic cations of IL and the inner surface of bare fused‐silica capillary. The N‐methyl‐2‐pyrrolidonium‐based IL modified capillary not only generated a stable suppressed electroosmotic flow, but also effectively eliminated the wall adsorption of proteins. Several important parameters such as the IL concentration, pH values, and concentrations of the background electrolyte were optimized to improve the separation of basic proteins. Consequently, under the optimum separation conditions, a satisfied separation of basic proteins including lysozyme, cytochrome c, ribonuclease A, and α‐chymotrypsinogen A with theoretical plates ranging from 2.09 × 105 to 4.48 × 105 plates/m had been accomplished within 15 min. The proposed method first illustrated the effect of hydrogen bond between coating material and inner capillary surface on the coating, which should be a new strategy to design and select more effective coating materials to form more stable coatings in CE.  相似文献   
965.
Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics, and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X‐ray, NMR, and cryo‐electron microscopy, and theoretical/mathematical models, such as molecular dynamics, the Poisson–Boltzmann equation, and the Nernst–Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger's functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent–solute interaction, and ion channel dynamics, whereas our coarse resolution representations highlight the compatibility of protein‐ligand bindings and possibility of protein–protein interactions. © 2013 Wiley Periodicals, Inc.  相似文献   
966.
In the present study, the electronic energy transfer pathways in trimeric and hexameric aggregation state of cyanobacteria C‐phycocyanin (C‐PC) were investigated in term of the Förster theory. The corresponding excited states and transition dipole moments of phycocyanobilins (PCBs) located into C‐PC were examined by model chemistry in gas phase at time‐dependent density functional theory (TDDFT), configuration interaction‐singles (CIS), and Zerner's intermediate neglect of differential overlap (ZINDO) levels, respectively. Then, the long‐range pigment‐protein interactions were approximately taken into account by using polarizable continuum model (PCM) at TDDFT level to estimate the influence of protein environment on the preceding calculated physical quantities. The influence of the short‐range interaction caused by aspartate residue nearby PCBs was examined as well. Only when the protonation of PCBs and its long‐ and short‐range interactions were properly taken into account, the calculated energy transfer rates (1/K) in the framework of Förster model at TDDFT/B3LYP/6‐31+G* level were in good agreement with the experimental results of C‐PC monomer and trimer. Furthermore, the present calculated results suggested that the energy transfer pathway in C‐PC monomer is predominant from β‐155 to β‐84 (1/K = 13.4 ps), however, from α‐84 of one monomer to β‐84 (1/K = 0.3–0.4 ps) in a neighbor monomer in C‐PC trimer. In C‐PC hexamer, an additional energy flow was predicted to be from β‐155 (or α‐84) in top trimer to adjacent β‐155 (or α‐84) (1/K = 0.5–2.7 ps) in bottom trimer. © 2013 Wiley Periodicals, Inc.  相似文献   
967.
Abstract

The presence of vitamin K1 in human body is important for preventing the hemorrhagic disease. Due to its very long side chain, vitamin K1 is highly insoluble in water. We have successfully dissolve a substantial amount of vitamin K1 in solutions of a commercial surfactant containing carboxymethyl ethoxylates (Hüls B433) and obtained low interfacial tension (IFT) and stable emulsion systems. This paper will present the details of these experiments. The solubilization of vitamin K1 was estimated from UV absorption. The IFT values were measured by using a spinning drop apparatus and all particle sizes were determined by using laser light scattering. By using the Hüls B433 surfactant and an optimum amount of CaCl2, we can dissolve vitamin K1 in water and obtain low IFT systems in the order of 10?2 dyne/cm. The emulsions obtained in these systems are stable and contain droplet sizes below 65 nm. The dissolution of vitamin K1 and the IFT behavior in these systems follow the rules for crude oil and prefer larger surfactant micelles.  相似文献   
968.
To solve the problem of high pressure of water injection in low permeability reservoirs, a high concentration of surfactant system was developed in this article. With the solubilization of oil in aqueous surfactant solution as a criterion, a formula was screened from anionic and nonionic-anionic surfactants, and the optimal depressurized system was obtained as follows, 13.3% surfactant HEX +2.23% n-propanol +4.47% n-butanol, the solubilization capability being up to 0.66 g/g. This system had good salt tolerance, and it exhibited water external microemulsion in the range of of 1 to 200 g/L NaCl. Core flooding results show that this high concentration of surfactant system formed water external microemulsion with the residual oil in the core, reducing the displacement pressure over 35%. Meanwhile, the effects of concentration and injection volume on depressurization were also investigated. It is indicated that a good depressurization effect was achieved after injecting 1 pore volume of the system with the salt concentration of 100 g/L.  相似文献   
969.
In this research TiO2 sample was synthesized by a simple sol–gel method and was characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) techniques. The XRD result indicated that the obtained product was anatase titanium dioxide with high purity, the TEM image clearly showed that the particle sizes of TiO2 nanoparticles were in the range of 30–70 nm, and the measured BET surface area of the heated TiO2 nanoparticles was 147.14 m2/g. In this work, the prepared TiO2 sample was used as a new adsorbent for the adsorption of radionuclide Co(II) ions from aqueous solutions, and the influence of pH, contact time, ionic strength and temperature in the presence or absence of humic acid/fulvic acid (HA/FA) were also investigated. The experimental results indicated that the adsorption of Co(II) ions onto TiO2 was strongly pH-dependent. Based on the surface complexation, the presence of HSs enhanced the adsorption of Co(II) ions and the influence of Co(II) adsorption onto FA–TiO2 hybrids was much stronger than that of HA–TiO2 at pH values of 2.0–9.0. Adsorption of Co(II) ions onto TiO2 powder was strongly dependent on ionic strength. The adsorption process mainly occured in the first contact time of 2 h and could be fitted by a pseudo-second-order rate model. The calculated thermodynamic data indicated that the adsorption of Co(II) ions onto TiO2 was a spontaneous process and favorable at high temperatures.  相似文献   
970.
We investigate the preparation of nearly monodisperse gold nanoparticles by heat treatment in different conditions. The effects of various solvents, heating temperature, and heating time length on the monodispersity of gold nanoparticles were studied systematically and a general route to generate gold nanoparticles with uniform size was determined. The first step was to prepare gold nanoparticles with less than 3 nm and the following operation was to heat the gold nanoparticles in the present of thiolated solvents where monodispersed gold nanoparticles could be obtained easily. Our approach has enriched synthesis of monodisperse gold nanoparticles, and may provide some valuable experimental data about how the heating process affects the size evolution of gold nanoparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号