首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   377篇
  免费   11篇
化学   252篇
晶体学   1篇
力学   6篇
数学   59篇
物理学   70篇
  2022年   6篇
  2021年   10篇
  2020年   9篇
  2019年   12篇
  2018年   5篇
  2017年   9篇
  2016年   11篇
  2015年   14篇
  2014年   20篇
  2013年   31篇
  2012年   20篇
  2011年   26篇
  2010年   19篇
  2009年   13篇
  2008年   22篇
  2007年   34篇
  2006年   27篇
  2005年   27篇
  2004年   26篇
  2003年   17篇
  2002年   15篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有388条查询结果,搜索用时 15 毫秒
21.
Being a close analogue of amflutizole, methyl 4‐amino‐3‐phenylisothiazole‐5‐carboxylate (C11H10N2O2S) was assumed to be capable of forming polymorphic structures. Noncentrosymmetric and centrosymmetric polymorphs have been obtained by crystallization from a series of more volatile solvents and from denser tetrachloromethane, respectively. Identical conformations of the molecule are found in both structures. The two polymorphs differ mainly in the intermolecular interactions formed by the amino group and in the type of stacking interactions between the π‐systems. The most effective method for revealing packing motifs in structures with intermolecular interactions of different types (hydrogen bonding, stacking, dispersion, etc.) is to study the pairwise interaction energies using quantum chemical calculations. Molecules form a column as the primary basic structural motif due to stacking interactions in both polymorphic structures under study. The character of a column (straight or zigzag) is determined by the orientations of the stacked molecules (in a `head‐to‐head' or `head‐to‐tail' manner). Columns bound by intermolecular N—H…O and N—H…N hydrogen bonds form a double column as the main structural motif in the noncentrosymmetric structure. Double columns in the noncentrosymmetric structure and columns in the centrosymmetric structure interact strongly within the ab crystallographic plane, forming a layer as a secondary basic structural motif. The noncentrosymmetric structure has a lower density and a lower (by 0.59 kJ mol?1) lattice energy, calculated using periodic calculations, compared to the centrosymmetric structure.  相似文献   
22.
Swelling (and shrinking) of poly(2-vinylpyridine), P2VP, polymer brushes, caused by pH changes, could be readily monitored by transmission surface plasmon resonance, T-SPR, spectroscopy. Gold nanoparticles attached to the P2VP polymer brushes dramatically enhanced the pH-induced shift in the T-SPR absorption spectra. (A 50 nm shift of the absorption maximum of the T-SPR spectrum of the supporting gold nanoislands was observed upon changing the pH from 5.0 to 2.0, corresponding to a swelling of the polymer brushes from 8.1 +/- 0.7 to 24.0 +/- 2.0 nm. Same shift in the opposite direction was observed upon changing the pH from 2.0 to 5.0.)  相似文献   
23.
The polymorphic study of 3‐(3‐phenyl‐1H‐1,2,4‐triazol‐5‐yl)‐2H‐1‐benzopyran‐2‐one, C17H11N3O2, was performed due to its potential biological activity and revealed three polymorphic modifications in the triclinic space group P, the monoclinic space group P21 and the orthorhombic space group Pbca. These polymorphs have a one‐column layered type of crystal organization. The strongest interactions between the molecules of the studied structures is stacking between π‐systems, while N—H…N and C—H…O hydrogen bonds link stacked columns forming layers as a secondary basic structural motif. C—H…π hydrogen bonds were observed between neighbouring layers and their role is the least significant in the formation of the crystal structure. Packing differences between the polymorphic modifications are minor and can be identified only using an analysis based on a comparison of the pairwise interaction energies.  相似文献   
24.
Host–Guest complexation process of calixarenehydroxymethylphosphonic acids with 10 amino acids in solution H2O/MeCN (99:1) had been studied. Binding constants of the inclusion complexes from the dependence between capacity factors of the Guest and the calixarene-Host concentration in the mobile phase had been calculated. It was shown the binding constants depend on the nature of the amino acid residue, conformation of the calixarene skeleton, quantity of phosphoryl groups at the upper rim. In accordance with molecular calculation the complexation is determined by the electrostatic interactions between the positively charged nitrogen atom of amino acid and the negatively charged oxygen atom of phosphonic group of calixarene molecule, hydrogen bonds, π–π, CH–π and solvatophobic, interactions.  相似文献   
25.
We report a route to fabricate two-level structured self-adaptive surfaces (SAS) of polymer materials. The first level of structure is built by a rough polymer film that consists of needlelike structures of micrometer size. The second level of structure is formed by the nanoscopic self-assembled domains of a demixed polymer brush irreversibly grafted onto the needles. By exposing the surface to solvents that are selective to one of the components of the brush, we reversibly tune the surface properties. The large-scale surface structure amplifies the response and enables us to control wettability, adhesion, and chemical composition of the surface over a wide range.  相似文献   
26.
This Article introduces a simple chemical model of a beta-sheet (artificial beta-sheet) that dimerizes by parallel beta-sheet formation in chloroform solution. The artificial beta-sheet consists of two N-terminally linked peptide strands that are linked with succinic or fumaric acid and blocked along one edge with a hydrogen-bonding template composed of 5-aminoanisic acid hydrazide. The template is connected to one of the peptide strands by a turn unit composed of (S)-2-aminoadipic acid (Aaa). 1H NMR spectroscopic studies show that these artificial beta-sheets fold in CDCl3 solution to form well-defined beta-sheet structures that dimerize through parallel beta-sheet interactions. Most notably, all of these compounds show a rich network of NOEs associated with folding and dimerization. The compounds also exhibit chemical shifts and coupling constants consistent with the formation of folded dimeric beta-sheet structures. The aminoadipic acid unit shows patterns of NOEs and coupling constants consistent with a well-defined turn conformation. The present system represents a significant step toward modeling the type of parallel beta-sheet interactions that occur in protein aggregation.  相似文献   
27.
X-ray crystallography identifies the aromatic donor group D = 2,5-dimethoxy-4-methylphenyl to be a suitable redox center for the construction of organic mixed-valence crystals owing to its large structural change attendant upon 1e oxidation to the cation-radical (D*(+)). The combination of cyclic voltammetry, dynamic ESR line broadening, and electronic (NIR) spectroscopy allows the intervalence electron transfer between the redox centers in the mixed-valence system D-br-D*(+) [where br can be an aliphatic trimethylene or an aromatic (poly)phenylene bridge] to be probed quantitatively. Independent measures of the electronic coupling matrix element (H) for D/D*(+) electron exchange via Mulliken-Hush theory accord with the X-ray crystallographic data-both sufficient to consistently identify the various D-br-D*(+) according to the Robin-Day classification. Thus, the directly coupled biaryl D-D*(+) is a completely delocalized cation in class III with the charge distributed equally over both redox centers. The trimethylene- and biphenylene-bridged cations D(CH(2))(3)D*(+) and D(ph)(2)D*(+) with highly localized charge distributions are prototypical class II systems involving moderately coupled redox centers with H approximately equal to 400 cm(-1). The borderline region between class II/III is occupied by the phenylene-bridged cation D(ph)D*(+); and the X-ray, CV, and NIR analyses yield ambivalent H values (which we believe to be) largely a result of an unusually asymmetric (20/80) charge distribution that is polarized between the D/D*(+) redox centers.  相似文献   
28.
29.
Expanding the wave functions of the ground and excited states of HD(+) (or pde) in terms of spherically symmetric explicitly correlated Gaussian functions with preexponential multipliers consisting of powers of the internuclear distance, and using the variational method, we performed very accurate nonadiabatic calculations of all bound states of this system corresponding to the zero total angular momentum quantum number (vibrational states; v=0-22). The total and the transition energies obtained agree with the best available calculations. For each state we computed the expectation values of the d-p, d-e, and p-e interparticle distances. This is the first time these quantities were computed for HD(+) using rigorous nonadiabatic wave functions. While up to the v=20 state some asymmetry is showing in the d-e and p-e distances, for v=21 and v=22 we observe a complete breakdown of the Born-Oppenheimer approximation and localization of the electron almost entirely at the deuteron.  相似文献   
30.
We describe an algorithm for the maximum clique problem that is parameterized by the graph’s degeneracy \(d\) . The algorithm runs in \(O\left( nm+n T_d \right) \) time, where \(T_d\) is the time to solve the maximum clique problem in an arbitrary graph on \(d\) vertices. The best bound as of now is \(T_d=O(2^{d/4})\) by Robson. This shows that the maximum clique problem is solvable in \(O(nm)\) time in graphs for which \(d \le 4 \log _2 m + O(1)\) . The analysis of the algorithm’s runtime is simple; the algorithm is easy to implement when given a subroutine for solving maximum clique in small graphs; it is easy to parallelize. In the case of Bianconi-Marsili power-law random graphs, it runs in \(2^{O(\sqrt{n})}\) time with high probability. We extend the approach for a graph invariant based on common neighbors, generating a second algorithm that has a smaller exponent at the cost of a larger polynomial factor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号