首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7976篇
  免费   1519篇
  国内免费   2024篇
化学   5991篇
晶体学   207篇
力学   496篇
综合类   347篇
数学   994篇
物理学   3484篇
  2024年   17篇
  2023年   83篇
  2022年   251篇
  2021年   275篇
  2020年   305篇
  2019年   328篇
  2018年   262篇
  2017年   326篇
  2016年   319篇
  2015年   392篇
  2014年   501篇
  2013年   616篇
  2012年   648篇
  2011年   689篇
  2010年   586篇
  2009年   628篇
  2008年   684篇
  2007年   624篇
  2006年   578篇
  2005年   526篇
  2004年   427篇
  2003年   303篇
  2002年   367篇
  2001年   338篇
  2000年   278篇
  1999年   253篇
  1998年   140篇
  1997年   125篇
  1996年   112篇
  1995年   79篇
  1994年   80篇
  1993年   74篇
  1992年   50篇
  1991年   43篇
  1990年   35篇
  1989年   28篇
  1988年   25篇
  1987年   28篇
  1986年   12篇
  1985年   18篇
  1984年   13篇
  1983年   11篇
  1982年   9篇
  1981年   5篇
  1980年   12篇
  1979年   10篇
  1975年   1篇
  1964年   1篇
  1959年   2篇
  1909年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Despite unique properties of layered transition‐metal dichalcogenide (TMD) nanosheets, there is still lack of a facile and general strategy for the preparation of TMD nanodots (NDs). Reported herein is the preparation of a series of TMD NDs, including TMD quantum dots (e.g. MoS2, WS2, ReS2, TaS2, MoSe2 and WSe2) and NbSe2 NDs, from their bulk crystals by using a combination of grinding and sonication techniques. These NDs could be easily separated from the N‐methyl‐2‐pyrrolidone when post‐treated with n‐hexane and then chloroform. All the TMD NDs with sizes of less than 10 nm show a narrow size distribution with high dispersity in solution. As a proof‐of‐concept application, memory devices using TMD NDs, for example, MoSe2, WS2, or NbSe2, mixed with polyvinylpyrrolidone as active layers, have been fabricated, which exhibit a nonvolatile write‐once‐read‐many behavior. These high‐quality TMD NDs should have various applications in optoelectronics, solar cells, catalysis, and biomedicine.  相似文献   
992.
Stereocomplexation is the stereoselective interaction between two opposite enantiomeric polymers through an interlocked orderly assembly. Most studies focus on the stereocomplex formation from the crystalline opposite enantiomers having the identical structure; nevertheless, rare examples were reported regarding the crystalline stereocomplexes from enantiomeric polymers having different chemical structures. Herein we show a strategy for polymer orderly assembly through the formation of crystalline hetero‐stereocomplexed polymeric materials by the cocrystallization of amorphous isotactic polycarbonates with different chemical structures and opposite configurations. The behaviors in the crystalline state are significantly different from that of the component enantiomeric polymers or their homo‐stereocomplexes. This study is expected to open up a new way to prepare various semicrystalline materials having a wide variety of physical properties and degradability.  相似文献   
993.
The small‐molecule biosynthetic potential of most filamentous fungi has remained largely unexplored and represents an attractive source for the discovery of new compounds. Genome sequencing of Calcarisporium arbuscula, a mushroom‐endophytic fungus, revealed 68 core genes that are involved in natural product biosynthesis. This is in sharp contrast to the predominant production of the ATPase inhibitors aurovertin B and D in the wild‐type fungus. Inactivation of a histone H3 deacetylase led to pleiotropic activation and overexpression of more than 75 % of the biosynthetic genes. Sampling of the overproduced compounds led to the isolation of ten compounds of which four contained new structures, including the cyclic peptides arbumycin and arbumelin, the diterpenoid arbuscullic acid A, and the meroterpenoid arbuscullic acid B. Such epigenetic modifications therefore provide a rapid and global approach to mine the chemical diversity of endophytic fungi.  相似文献   
994.
Producing macrocyclic mesogens that are responsive to guest encapsulation presents a significant challenge. Cyclo[6]aramides, a type of macrocycle with a hydrogen‐bond‐constrained backbone, exhibit thermotropic lamellar, discotic nematic, hexagonal, and rectangular columnar mesophases over a considerably wide temperature range, including at room temperature. Additionally, cyclo[6]aramides show unusual mesophase transitions from lamellar to hexagonal columnar phase mediated by macrocyclic host–guest (H–G) interactions between the macrocycles and alkylammonium salts. The phase transition, triggered by an organic guest engaging in H–G interactions with a macrocyclic cavity, provides a novel strategy for manipulating the properties of liquid‐crystalline materials. The crystal structure of a homologous cyclo[6]aramide reveals a disk‐shaped, near‐planar molecular backbone that facilitates intermolecular π–π stacking and leads to columnar assembly.  相似文献   
995.
Superhydrophobic and superhydrophilic surfaces are of great interest because of a large range of applications, for example, as antifogging and self‐cleaning coatings, as antibiofouling paints for boats, in metal refining, and for water–oil separation. An aqueous ink based on three‐dimensional graphene monoliths (Gr) can be used for constructing both superhydrophobic and superhydrophilic surfaces on arbitrary substrates with different surficial structures from the meso‐ to the macroscale. The surface wettability of a Gr‐coated surface mainly depends on which additional layers (air for a superhydrophobic surface and water for a superhydrophilic surface) are adsorbed on the surface of the graphene sheets. Switching a Gr‐coated surface between being superhydrophobic and superhydrophilic can thus be easily achieved by drying and prewetting with ethanol. The Gr‐based superhydrophobic membranes or films should have great potential as efficient separators for fast and gravity‐driven oil–water separation.  相似文献   
996.
A good understanding of gas‐phase fragmentation chemistry of peptides is important for accurate protein identification. Additional product ions obtained by sodiated peptides can provide useful sequence information supplementary to protonated peptides and improve protein identification. In this work, we first demonstrate that the sodiated a3 ions are abundant in the tandem mass spectra of sodium‐cationized peptides although observations of a3 ions have rarely been reported in protonated peptides. Quantum chemical calculations combined with tandem mass spectrometry are used to investigate this phenomenon by using a model tetrapeptide GGAG. Our results reveal that the most stable [a3 + Na ? H]+ ion is present as a bidentate linear structure in which the sodium cation coordinates to the two backbone carbonyl oxygen atoms. Due to structural inflexibility, further fragmentation of the [a3 + Na ? H]+ ion needs to overcome several relatively high energetic barriers to form [b2 + Na ? H]+ ion with a diketopiperazine structure. As a result, low abundance of [b2 + Na ? H]+ ion is detected at relatively high collision energy. In addition, our computational data also indicate that the common oxazolone pathway to generate [b2 + Na ? H]+ from the [a3 + Na ? H]+ ion is unlikely. The present work provides a mechanistic insight into how a sodium ion affects the fragmentation behaviors of peptides. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
997.
Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography.  相似文献   
998.
999.
1000.
Guanine-rich oligonucleotides (GROs) have attracted considerable attention as anticancer agents, because they exhibit cancer-selective antiproliferative activity and can form G-quadruplex structures with higher nuclease resistance and cellular uptake. Recently, a GRO, AS1411 has reached phase II clinical trials for acute myeloid leukemia and renal cell carcinoma. The antiproliferative activity of GROs has been associated with various protein targets; however the real mechanisms of action remain unclear. In this study, we showed evidence that antiproliferative activity of GROs (including AS1411) is mainly contributed by the cytotoxicity of their guanine-based degradation products, such as monophosphate deoxyguanosine (dGMP), deoxyguanosine (dG) and guanine. The GROs with lower nuclease resistance exhibited higher antiproliferative activity. Among nucleotides, nucleosides and nucleobases, only guanine-based compounds showed highly concentration-dependent cytotoxicity. Our results suggest that it is necessary to reconsider the cancer-selective antiproliferative activity of GROs. Since guanine-based compounds are endogenous substances in living organisms, systematic studies of the cytotoxicity of these compounds will provide new information for the understanding of certain diseases and offer useful information for drug design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号