首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94724篇
  免费   7536篇
  国内免费   6049篇
化学   53979篇
晶体学   1576篇
力学   5499篇
综合类   403篇
数学   8643篇
物理学   38209篇
  2023年   777篇
  2022年   1824篇
  2021年   1894篇
  2020年   1908篇
  2019年   1952篇
  2018年   1888篇
  2017年   1853篇
  2016年   2670篇
  2015年   2602篇
  2014年   3371篇
  2013年   5465篇
  2012年   5778篇
  2011年   6479篇
  2010年   4701篇
  2009年   4815篇
  2008年   5606篇
  2007年   4967篇
  2006年   4655篇
  2005年   3948篇
  2004年   3308篇
  2003年   2870篇
  2002年   2779篇
  2001年   3895篇
  2000年   2879篇
  1999年   2157篇
  1998年   1519篇
  1997年   1447篇
  1996年   1231篇
  1995年   1064篇
  1994年   986篇
  1993年   839篇
  1992年   1122篇
  1991年   1082篇
  1990年   986篇
  1989年   833篇
  1988年   807篇
  1987年   851篇
  1986年   721篇
  1985年   928篇
  1984年   852篇
  1983年   596篇
  1982年   575篇
  1981年   546篇
  1980年   504篇
  1979年   639篇
  1978年   657篇
  1977年   670篇
  1976年   580篇
  1975年   487篇
  1974年   526篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Conductive composite films of poly(styrene‐con‐butylacrylate) copolymers filled with low‐density, Ni‐plated core‐shell polymeric particles were prepared and their behaviors of positive temperature coefficient of resistance (PTCR) were investigated. When the conductive fillers in the composite film were loaded beyond the critical volume, 10 up to 25 vol %, composite films exhibited a unique electrical resistant transition behavior, which the electrical resistance rapidly increased by several orders of magnitude at the critical temperature. The PTCR transition temperature, in general, occurred before the glass transition temperature of polymer matrix. Further increased the conductive filler loading to 30 vol %, the overpacked conduction paths were formed in the entire composite and the PTCR effects became blurred. While the composite film treated with thermal cycle several times from room temperature up to 120 °C, the electrical resistivity increased accompanied with the shift of the PTCR transition to lower temperature. The reason might have been caused by the formed interfacial cracks within the composite film. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 322–329, 2007  相似文献   
82.
The phase diagram of the nematic mesophase present in the tetradecyltrimethylammonium bromide/sodium bromide/water ternary system was determined. A calamitic nematic mesophase (NC) was observed which extends to very high concentrations of electrolyte. The order parameters of the surfactant head group in the mesophases were studied by the NMR quadrupolar splitting of the deuterated surfactant. On increasing the temperature of nematic mesophases with low electrolyte concentrations, a phase separation occurs with the formation of a more highly ordered hexagonal phase and an isotropic phase. Diffusion measurements of the isotropic micellar solution by the NMR PFG method were used to estimate hydrodynamic radii at low surfactant concentrations and to study micelle diffusion as the concentration of the surfactant was increased to the liquid crystalline region. At higher surfactant concentrations, the diffusion coefficient reached a limiting value. The calamitic nematic mesophase in this surfactant/electrolyte/water system appears to be formed by long wormlike micelles.  相似文献   
83.
In this contribution, we demonstrate a new effective methodology for constructing highly efficient and durable poly(p‐phenyleneethynylene) (PPE) containing emissive material with nonaggregating and hole‐facilitating properties through the introduction of hole‐transporting blocks into the PPE system as the grafting coils as well as building the energy donor–acceptor architecture between the grafting coils and the PPE backbone. Poly(2‐(carbazol‐9‐yl)ethyl methacrylate) (PCzEMA), herein, is chosen as the hole‐transporting blocks, and incorporated into the PPE system as the grafting coils via atom transfer radical polymerization. The chemical structure of the resultant copolymer, PPE‐g‐PCzEMA, was characterized by NMR and gel permeation chromatography, showing that the desirable copolymer was obtained with the narrow polydispersity. The increased thermal stability of PPE‐g‐PCzEMA was confirmed by thermogravimetric analysis and differential scanning calorimetry along with its macroinitiator. The optoelectronic properties of this copolymer were studied in detail by ultraviolet‐visible absorption, photoluminescence emission and excitation spectra, and cyclic voltammogram (CV). The results indicate that PPE‐g‐PCzEMA exhibits the solid‐state luminescent property dominated by individual lumophores, and also the energy transfer process from the PCzEMA blocks to the PPE backbone with a relatively higher energy transfer efficiency in the solid‐state compared to that of the solution state. Additionally, the hole‐injection property is greatly facilitated due to the presence of PCzEMA, as confirmed by CV profiles. All these data indicate that PPE‐g‐PCzEMA is a good candidate for use in optoelectronic devices. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3776–3787, 2007  相似文献   
84.
We present Miura transformations for the continuous and several discrete Painlev\'e I equations. In the case of the continuous PI, we use the Hamiltonian formulation of the Painlev\'e equations and show that there exists a Miura transformation between PI and the binomial, second degree, equation of Cosgrove SDV. In the case of the discrete PI's we obtain two different kinds of Miuras. One kind relates a d-PI to some other d-PI while the other leads to discrete four-point equations which are the discrete analogs of the derivative of Cosgrove's equation SDV.  相似文献   
85.
In the paper, the dynamic modelling and control are presented for a simply supported beam under a moving mass. The equations of motion are obtained based on the Euler-Bernoulli beam theory by including the dynamic effect of a moving mass travelling along a vibrating path. The equations of motion are discretized by using the assumed modes method with the static deflection of the beam. In order to reduce the deflection of the beam under a moving mass, a controller with full state feedback is designed based on linearized equations of motion. Two piezoelectric actuators are bonded along the bottom of the beam at different locations determined by the minimization of an optimal cost functional. Numerical simulations are performed with respect to different constant velocities and different moving masses. The controller with two piezoelectric actuators shows excellent performance under unknown disturbances to the system.  相似文献   
86.
87.
A general theoretical analysis of the effect of film thickness on equilibrium and kinetic surface segregation in binary alloy thin films is presented. In this analysis, a constrained condition that represents the finite size of thin film system has been introduced to the modified Darken model, which has been used to describe both equilibrium and kinetic surface segregation in bulk materials. Simulation of surface segregation for alloy thin films can be carried out for all composition ranges and all film thicknesses if only knowing the surface segregation parameters for bulk materials. Simulations of equilibrium and kinetic surface segregation in Cu(1 1 1)Ag binary alloy thin film are presented.  相似文献   
88.
Ethylene–propylene copolymerization, using [(Ph)NC(R2)CHC(R1)O]2TiCl2 (R1 = CF3, Ph, or t‐Bu; R2 = CH3 or CF3) titanium complexes activated with modified methylaluminoxane as a cocatalyst, was investigated. High‐molecular‐weight ethylene–propylene copolymers with relatively narrow molecular weight distributions and a broad range of chemical compositions were obtained. Substituents R1 and R2 influenced the copolymerization behavior, including the copolymerization activity, methylene sequence distribution, molecular weight, and polydispersity. With small steric hindrance at R1 and R2, one complex (R1 = CF3; R2 = CH3) displayed high catalytic activity and produced copolymers with high propylene incorporation but low molecular weight. The microstructures of the copolymers were analyzed with 13C NMR to determine the methylene sequence distribution and number‐average sequence lengths of uninterrupted methylene carbons. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5846–5854, 2006  相似文献   
89.
A series of novel soluble pyridazinone‐ or pyridazine‐containing poly(arylene ether)s were prepared by a polycondensation reaction. The pyridazinone monomer, 6‐(4‐hydroxyphenyl)pyridazin‐3(2H)‐one ( 1 ), was synthesized from the corresponding acetophenone and glyoxylic acid in a simple one‐pot reaction. The pyridazinone monomer was successfully copolymerized with bisphenol A (BPA) or 1,2‐dihydro‐4‐(4‐hydroxyphenyl)phthalazin‐1(2H)‐one (DHPZ) and bis(4‐fluorophenyl)sulfone to form high‐molecular‐weight polymers. The copolymers had inherent viscosities of 0.5–0.9 dL/g. The glass‐transition temperatures (Tg's) of the copolymers synthesized with BPA increased with increasing content of the pyridazinone monomer. The Tg's of the copolymers synthesized from DHPZ with different pyridazinone contents were similar to those of the two homopolymers. The homopolymers showed Tg's from 202 to 291 °C by differential scanning calorimetry. The 5% weight loss temperatures in nitrogen measured by thermogravimetric analysis were in the range of 411–500 °C. 4‐(6‐Chloropyridazin‐3‐yl)phenol ( 2 ) was synthesized from 1 via a simple one‐pot reaction. 2 was copolymerized with 4,4′‐isopropylidenediphenol and bis(4‐fluorophenyl)sulfone to form high‐Tg polymers. The copolymers with less than 80 mol % pyridazinone or chloropyridazine monomers were soluble in chlorinated solvents such as chloroform. The copolymers with higher pyridazinone contents and homopolymers were not soluble in chlorinated solvents but were still soluble in dipolar aprotic solvents such as N‐methylpyrrolidinone. The soluble polymers could be cast into flexible films from solution. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3328–3335, 2006  相似文献   
90.
A novel microphase‐inversion method was proposed for the preparation of TiO2–SiO2/poly(methyl methacrylate) core–shell nanocomposite particles. The inorganic–polymer nanocomposites were first synthesized via a free‐radical copolymerization in a tetrahydrofuran solution, and the poor solvent was added slowly to induce the microphase separation of the nanocomposite and result in the formation of nanoparticles. The average particle sizes of the microspheres ranged from 70 to 1000 nm, depending on the reaction conditions. Transmission electron microscopy and scanning electron microscopy indicated a core–shell morphology for the obtained microspheres. Thermogravimetric analysis and X‐ray photoelectron spectroscopy measurements confirmed that the surface of the nanocomposite microspheres was polymer‐rich, and this was consistent with the core–shell morphology. The influence of the synthetic conditions, such as the inorganic composition and the content of the crosslinking monomer, on the particle properties was studied in detail. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3911–3920, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号