We report results of the atomic and electronic structures of Al7C cluster using ab initio molecular dynamics with ultrasoft pseudopotentials and generalized gradient approximation. The lowest energy structure is
found to be the one in which carbon atom occupies an interstitial position in Al7 cluster. The electronic structure shows that the recent observation [Chem. Phys. Lett. 316, 31 (2000)] of magic behavior of Al7C- cluster is due to a large highest occupied and lowest unoccupied molecular orbital (HOMO-LUMO) gap which makes Al7C- chemically inert. These results have further led us to the finding of a new neutral magic cluster Al7N which has the same number of valence electrons as in Al7C- and a large HOMO-LUMO gap of 1.99 eV. Further, calculations have been carried out on (Al7N)2 to study interaction between magic clusters.
Received 28 July 2001 相似文献
Tungsten microcone arrays with a high aspect ratio are formed by the cumulative nanosecond pulsed-Nd:YAG laser irradiation
of single-crystal tungsten under low pressure in an inert atmosphere. The morphology of the microcones and their density were
strongly affected by the number of laser pulses. The microcones grew to a length of 20 μm with a diameter of about 1.5 μm
at the tip after irradiation with more than 1200 pulses under our experimental conditions. They may have potential applications
for emission cathodes in a field-emission display (FED) and in microelectronic devices.
Received: 8 January 2001 / Accepted: 13 June 2001 / Published online: 2 October 2001 相似文献
Adsorption and decomposition of triethylindium (TEI: (C2H5)3In) on a GaP(0 0 1)-(2×1) surface have been studied by low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS). It is found from the TPD result that ethyl radical and ethylene are evolved at about 300–400 and 450–550 K, respectively, as decomposition products of TEI on the surface. This result is quite different from that on the GaP(0 0 1)-(2×4) surface. The activation energy of desorption of ethyl radical is estimated to be about 93 kJ/mol. It is suggested that TEI is adsorbed molecularly on the surface at 100 K and that some of TEI molecules are dissociated into C2H5 to form P–C2H5 bonds at 300 K. The vibration modes related to ethyl group are decreased in intensity at about 300–400 and 450–550 K, which is consistent with the TPD result. The TEI molecules (including mono- and di-ethylindium) are not evolved from the surface. Based on the TPD and HREELS results, the decomposition mechanism of TEI on the GaP(0 0 1)-(2×1) surface is discussed and compared with that on the (2×4) surface. 相似文献
The results of laser induced deposition of copper on polyimide substrate from copper electrolyte solution are reported. Unlike most work reported in the literatures where CW Ar+ lasers were used, a second harmonic (532 nm wavelength) Q-switch Nd:YAG laser was used for our experiments. The deposition process was conducted by laser-catalyzing of the polyimide surface and subsequent photothermal-accelerated reduction of copper-complex ions in an alkaline reducing environment. The characteristics of the deposited copper line were investigated in terms of laser beam scanning speed, and the number of scans. The surface morphology and chemical composition of the deposited copper were analyzed using field emission scanning electron microscope (FESEM) and energy dispersive spectrometer (EDX). The optimum processing conditions have been identified. The copper deposit was found to adhere well to the substrate. 相似文献
The surface morphology evolution of Ni/W alloys was studied, as a function of the alloy composition. Using the modified plating baths developed in our laboratory recently, electroplated Ni/W alloys with different W content, in the range of 7–67 atom percent (a/o), can be obtained. This was found to lead to different structures, ranging from polycrystalline fcc-Ni type structure to amorphous, followed by orthorhombic with increasing W content in the alloy. Powder XRD was studied to determine the crystal structures. Ex situ STM, AFM and SEM were used to study in detail the surface morphologies of the different alloys, and their evolution with increasing W content.
The important findings are that a mixture of two crystalline forms can give rise to an amorphous structure. Hillocks that are usually a characteristic of epitaxial growth can also exist in the amorphous alloys. Oriented scratches caused by stress can also be formed.
Up to 20 a/o of W is deposited in the alloys in crystalline form, with the fcc-Ni type structure. Between 20 and about 40 a/o an amorphous structure is observed, and above that an orthorhombic crystal structure is seen, which is characteristic of the NiW binary alloy. Careful choice of the composition of the plating bath allowed us to deposit an alloy containing 67 a/o W, which corresponds to the composition NiW2. 相似文献
A novel technique to overcome the long-term drift and hysteresis of a scanning Fabry–Perot filter was developed and applied to wavelength and power monitoring of DWDM system. By using the comb peaks generated by a temperature-stabilized, near threshold-biased Fabry–Perot diode laser as wavelength reference for the scanning Fabry–Perot filter, wavelength and power measurement accuracy of better than ±10 pm and 0.2 dB, respectively, were achieved. 相似文献
Successful replacement of B by C in the series MgB2−xCx for values of x upto 0.3 is reported. Resistivity and ac susceptibility measurements have been carried out in the samples. Solubility of carbon, inferred from the observed change in the lattice parameter with carbon content indicates that carbon substitutes upto x=0.30 into the MgB2 lattice. The superconducting transition temperature, Tc measured both by zero resistivity and the onset of the diamagnetic signal shows a systematic decrease with increase in carbon content upto x=0.30, beyond which the volume fraction decreases drastically. The temperature dependence of resistivity in the normal state fits to the Bloch–Gruneisen formula for all the carbon compositions studied. The Debye temperature, θD, extracted from the fit, is seen to decrease with carbon content from 900 to 525 K, whereas the electron–phonon interaction parameter, λ, obtained from the McMillan equation using the measured Tc and θD, is seen to increase monotonically from 0.8 in MgB2 to 0.9 in the x=0.50 sample. The ratio of the resistivities between 300 and 40 K versus Tc is seen to follow the Testardi correlation for the C substituted samples. The decrease in Tc is argued to mainly arise due to large decrease in θD with C concentration and a decrease in the hole density of states at N(EF). 相似文献