首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58879篇
  免费   775篇
  国内免费   302篇
化学   27351篇
晶体学   1026篇
力学   3199篇
综合类   8篇
数学   4653篇
物理学   23719篇
  2022年   535篇
  2021年   478篇
  2020年   446篇
  2019年   424篇
  2018年   571篇
  2017年   496篇
  2016年   891篇
  2015年   634篇
  2014年   987篇
  2013年   2496篇
  2012年   2331篇
  2011年   3009篇
  2010年   2123篇
  2009年   2172篇
  2008年   2748篇
  2007年   2585篇
  2006年   2451篇
  2005年   2174篇
  2004年   1983篇
  2003年   1752篇
  2002年   1646篇
  2001年   3005篇
  2000年   2148篇
  1999年   1554篇
  1998年   1080篇
  1997年   1057篇
  1996年   884篇
  1995年   783篇
  1994年   704篇
  1993年   623篇
  1992年   951篇
  1991年   946篇
  1990年   849篇
  1989年   747篇
  1988年   731篇
  1987年   795篇
  1986年   655篇
  1985年   882篇
  1984年   828篇
  1983年   568篇
  1982年   562篇
  1981年   533篇
  1980年   496篇
  1979年   620篇
  1978年   650篇
  1977年   660篇
  1976年   575篇
  1975年   481篇
  1974年   521篇
  1973年   450篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Morphological and chemical properties of both the surface and interface of poly(vinylidene fluoride)/poly(methyl methacrylate)-co-poly(ethyl acrylate) (PVDF/PMMA-co-PEA) blend films have been investigated before and after the samples were exposed to ultraviolet (UV) irradiation using a xenon arc lamp at 50 °C and 9% relative humidity (RH) for 7 months. Surface and interfacial morphologies were studied by atomic force microscopy (AFM). Chemical composition information was obtained by confocal Raman microscopy, attenuated total reflection-FTIR spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and contact angle measurements. Results show an enrichment of the PVDF material at the air surface, while the acrylic copolymer enriches the interface. Blends having greater than 50% mass fraction of PVDF show little change in the surface morphology after UV exposure for 7 months. However, for a lower PVDF content, blends exhibit significant degradation of PMMA-co-PEA copolymer and a much rougher surface after UV exposure. Microstructural changes in the PVDF spherulites are also observed after UV degradation. It is found that the surface and interfacial morphologies are correlated with the chemical properties.  相似文献   
942.
X-ray photoelectron spectroscopy (XPS) is used to probe oxidation states of Si species in particles deposited using a pulsed ion-beam evaporation method. The effects of He ambient gas, ion beam intensity and post-treatments on the oxides composition and oxygen content have been studied. It is found that presence of He ambient gas led to a profound oxidation of Si species as compared to that prepared in vacuum at the same ion-beam ablation energy, i.e. both increase of SiO2 component and oxygen concentration in the oxides coverage. The deposition in He also resulted in an increase of oxygen concentration even under lower ablation intensity, but a higher Si suboxides concentration. It is revealed that the reaction between Si and O was controlled by the ion beam intensity (temperature of Si plasma) and the gas ambient (collision probability of Si and O species). The difference in structure of oxide layers for samples obtained under various conditions is discussed based on the results of XPS analyses.  相似文献   
943.
A binary alloy Schottky barrier diode on zinc oxide (ZnO) was developed using the combinatorial ion beam-assisted deposition system. The compositional fraction of the binary alloy was continuously varied using the composition-spread technique, to control the Schottky barrier height. After metal deposition, patterned Schottky diodes were fabricated on a ZnO single-crystal substrate. Pt-Ru alloy was selected from the work function viewpoint. Our experiments showed that the compositional fraction of the Schottky binary alloys changed continuously as designed and the Schottky barrier heights measured by current-voltage (I-V) measurements increased with increasing Pt content. Maximum barrier height difference for ZnO was 137 meV. Using ion beam deposition in parallel with the combinatorial system showed that the Schottky barrier heights for ZnO can be controlled by binary metal alloying.  相似文献   
944.
The influence of 70 keV He+ ion implantation and subsequent annealing of Cz-indium phosphide (InP) samples has been investigated using a slow positron beam-based Doppler broadening spectrometer. Three samples with ion fluences of 1 × 1016, 5 × 1016 and 1 × 1017 cm−2 were studied in the as-implanted condition as well as after annealing at 640 °C for times between 5 and 40 min. It was found that the line-shape parameter of the positron-electron annihilation peak in the implanted layer increases after 5 min annealing, then after longer annealing times it starts to decline gradually until it reaches a value close to the value of the as-grown sample. This implies that vacancy-like defects can be created in InP by He implantation followed by short-thermal annealing at T > 600 °C. Comparison of the results with a study where cavities were observed in He-implanted InP has been carried out.  相似文献   
945.
Corrosion-related defects of pure iron were investigated by measuring Doppler broadening energy spectra (DBES) of positron annihilation and positron annihilation lifetime (PAL). Defect profiles of the S-parameter from DBES as a function of positron incident energy up to 30 keV (i.e. ∼1 μm depth) were analyzed. The DBES data show that S-parameter increases as a function of positron incident energy (mean depth) after corrosion, and the increase in the S-parameter is larger near the surface than in the bulk due to corrosion. Furthermore, information on defect size from PAL data as a function of positron incident energy up to 10 keV (i.e. ∼0.2 μm depth) was analyzed. In the two-state trapping model, the lifetime τ2 = 500 ps is ascribed to annihilation of positrons in voids with a size of the order of nanometer. τ1, which decreases with depth from the surface to the bulk, is ascribed to the annihilation of positrons in dislocations and three-dimensional vacancy clusters. The corroded samples show a significant increase in τ1 and the intensity I2, and near the surface the corroded iron introduces both voids and large-size three-dimensional vacancy clusters. The size of vacancy clusters decreases with depth.  相似文献   
946.
There are many advantages in being able to perform positron annihilation lifetime spectroscopy (PALS) using a variable energy positron beam, the most obvious being the easy identification of different defect types at different depths. The difficulty in conducting variable energy (VE) PALS studies lies in the fact that a “start” signal is required to signal the entry of the positron into the target. Two methods have been used to overcome this problem, namely the bunching technique, which employs radio frequency (RF) cavities and choppers, and secondly the use of secondary electrons emitted from the target. The latter technique is in terms of experimental complexity much simpler, but has in the past suffered from poor time resolution (typically ∼500 ps). In this work, we present a series of computer simulations of a design based on the secondary electron emission from thin C-foils in transmission mode which shows that significant improvements in time resolution can be made with resolutions ∼200 ps being in principle possible.  相似文献   
947.
A three-dimensional molecular dynamics (MD) model is utilized to investigate the effect of tool geometry on the deformation process of the workpiece and the nature of deformation process at the atomic-scale. Results show that different states exist between the atomic force microscope (AFM) pin tool and the workpiece surface, i.e. the non-wear state, the ploughing state, the state in which ploughing is dominant and the state in which cutting plays a key role. A relationship between the deformation process of the workpiece and the potential energy variation is presented. The potential energy variation of atoms in different deformed regions in the workpiece such as plastically deformed region, elastically deformed region and the mixed deformation region is different. The features of variations of potential energy are discussed.  相似文献   
948.
The surface properties of nanofibres are of importance in various applications. In this work, electrospun polyamide nanofibres were used as substrates for creating functional nanostructures on the nanofibre surfaces. A RF magnetron sputter coating was used to deposit the functional layer of titanium dioxide (TiO2) onto the nanofibres. Atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and environmental scanning electron microscopy (ESEM) were employed to study the topography, grain structure and wetting of the nanofibre surfaces, respectively. The AFM results indicated a significant difference in the morphology of the nanofibres before and after the TiO2 sputter coating. The XRD analysis showed the amorphous structures of the TiO2 deposition layer. XPS spectra reflected the chemical features of the deposited nanostructures. The ESEM observation revealed that the surface wettability of TiO2 sputter coated nanofibres was significantly improved after UV irradiation.  相似文献   
949.
We report on the growth and characterization of delta-doped amorphous Ge:Mn diluted magnetic semiconductor thin films on GaAs (0 0 1) substrates. The fabricated samples exhibit different magnetic behaviors, depending on the Mn doping concentration. The Curie temperature was found to be dependent on both the Mn doping concentration and spacing between the doping layers. A sharp drop in magnetization and rise in resistivity are observed at low temperature in samples with high Mn doping concentrations, which is also accompanied by a negative thermal remanent magnetization (TRM) in the higher temperature range. The temperature at which the magnetization starts to drop and the negative TRM appears show a correlation with the Mn doping concentration. The experimental results are discussed based on the formation of ferromagnetic regions at high temperature and antiferromagnetic coupling between these regions at low temperature.  相似文献   
950.
In this article, composite nanofibers of poly(ε-caprolactone) (PCL) with iron–platinum (FePt) nanoparticles were successfully fabricated via coaxial electrospinning. The structure and morphology of FePt/PCL composite nanofibers were observed using transmission electron microscope and scanning electron microscope, respectively. The magnetic behavior of FePt/PCL composite nanofibers was investigated by alternating gradient magnetometer at room temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号