首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1498篇
  免费   336篇
  国内免费   247篇
化学   948篇
晶体学   57篇
力学   47篇
综合类   21篇
数学   122篇
物理学   886篇
  2024年   11篇
  2023年   25篇
  2022年   46篇
  2021年   63篇
  2020年   70篇
  2019年   60篇
  2018年   38篇
  2017年   54篇
  2016年   68篇
  2015年   91篇
  2014年   99篇
  2013年   116篇
  2012年   118篇
  2011年   116篇
  2010年   109篇
  2009年   84篇
  2008年   95篇
  2007年   78篇
  2006年   80篇
  2005年   86篇
  2004年   66篇
  2003年   73篇
  2002年   103篇
  2001年   58篇
  2000年   48篇
  1999年   44篇
  1998年   32篇
  1997年   30篇
  1996年   26篇
  1995年   19篇
  1994年   14篇
  1993年   6篇
  1992年   12篇
  1991年   7篇
  1990年   7篇
  1989年   9篇
  1988年   3篇
  1987年   4篇
  1986年   7篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有2081条查询结果,搜索用时 15 毫秒
61.
Multidimensional nano‐heterostructures (NHSs) that have unique dimensionality‐dependent integrative and synergic effects are intriguing but still underdeveloped. Here, we report the first helical 1D/2D epitaxial NHS between CdS and ZnIn2S4. Experimental and theoretical studies reveal that the mismatches in lattice and dangling bonds between 1D and 2D units govern the growth procedure. The resulting well‐defined interface induces the delocalized interface states, thus facilitate the charge transfer and enhance the performance in the photoelectrochemical cells. We foresee that the mechanistic insights gained and the electronic structures revealed would inspire the design of more complex 1D/2D NHSs with outstanding functionalities.  相似文献   
62.
We report a NaOH‐mediated NaBH4 reduction method for the synthesis of mono‐, bi‐, and tri‐thiolate‐protected Au25 nanoclusters (NCs) with precise control of both the Au core and thiolate ligand surface. The key strategy is to use NaOH to tune the formation kinetics of Au NCs, i.e., reduce the reduction ability of NaBH4 and accelerate the etching ability of free thiolate ligands, leading to a well‐balanced reversible reaction for rapid formation of thermodynamically favorable Au25 NCs. This protocol is facile, rapid (≤3 h), versatile (applicable for various thiolate ligands), and highly scalable (>1 g Au NCs). In addition, bi‐ and tri‐thiolate‐protected Au25 NCs with adjustable ratios of hetero‐thiolate ligands were easily obtained. Such ligand precision in molecular ratios, spatial distribution and uniformity resulted in richly diverse surface landscapes on the Au NCs consisting of multiple functional groups such as carboxyl, amine, and hydroxy. Analysis based on NMR spectroscopy revealed that the hetero‐ligands on the NCs are well distributed with no ligand segregation. The unprecedented synthesis of multi‐thiolate‐protected Au25 NCs may further promote the practical applications of functional metal NCs.  相似文献   
63.
The activation of C?H bonds in alkanes is currently a hot research topic in chemistry. The atomic oxygen radical anion (O?.) is an important species in C?H activation. The mechanistic details of C?H activation by O?. radicals can be well understood by studying the reactions between O?. containing transition metal oxide clusters and alkanes. Here the reactivity of scandium oxide cluster anions toward n‐butane was studied by using a high‐resolution time‐of‐flight mass spectrometer coupled with a fast flow reactor. Hydrogen atom abstraction (HAA) from n‐butane by (Sc2O3)NO? (N=1–18) clusters was observed. The reactivity of (Sc2O3)NO? (N=1–18) clusters is significantly sizedependent and the highest reactivity was observed for N=4 (Sc8O13?) and 12 (Sc24O37?). Larger (Sc2O3)NO? clusters generally have higher reactivity than the smaller ones. Density functional theory calculations were performed to interpret the reactivity of (Sc2O3)NO? (N=1–5) clusters, which were found to contain the O?. radicals as the active sites. The local charge environment around the O?. radicals was demonstrated to control the experimentally observed size‐dependent reactivity. This work is among the first to report HAA reactivity of cluster anions with dimensions up to nanosize toward alkane molecules. The anionic O?. containing scandium oxide clusters are found to be more reactive than the corresponding cationic ones in the C?H bond activation.  相似文献   
64.
Freeze-tolerant baker’s yeasts are required for the processing of frozen doughs. The present study was carried out to investigate the cell survival rate after frozen storage and the change of fermentability in dough due to frozen storage, and to discuss quantitatively the relationship of freeze tolerance with intracellular trehalose, amino acids, and glycerol, using six types of baker’s yeasts as the test materials. The experimental results showed that the fermentability of yeast cells in frozen dough was strongly correlated with the cell survival rate. The baker’s yeast with a higher level of cell survival rate had a larger increase in the total intracellular compound content after frozen storage, and the cell survival rate increased linearly with increasing total intracellular compound content in frozen yeast cells. Trehalose was a primary compound affecting freeze tolerance, followed by glutamic acid, arginine, proline, asparagic acid, and glycerol. The basic information provided by the present study is useful for exploring the freeze-tolerance mechanisms of baker’s yeast cells, breeding better freeze-tolerant baker’s yeast strains, and developing more effective cryoprotectants.  相似文献   
65.
Utilizing sustainable energy for chemical activation of small molecules, such as CO2, to produce important chemical feedstocks is highly desirable. The simultaneous production of CO/H2 mixture (syngas) from photoreduction of CO2 and H2O is highly promising. However, the relationships between structure, composition, crystallinity, and photocatalytic performance are still indistinct. Here, amorphous ultrathin CoO nanowires and polyoxometalate incorporated nanowires with even lower crystallinity were synthesized. The POM-incorporated ultrathin nanowires exhibit high photocatalytic syngas production activity, reaching H2 and CO evolution rates of 11555 and 4165 μmol g−1 h−1 respectively. Further experiments indicate that the ultrathin morphology and incorporation of POM both contribute to the superior performance. Multiple characterizations reveal the enhanced charge–hole separation efficiency of the catalyst would facilitate the photocatalysis.  相似文献   
66.
Micro/nanoscale photonic barcodes based on multicolor luminescent segmented heterojunctions hold potential for applications in information security. However, such multicolor heterojunctions reported thus far are exclusively based on static luminescent signals, thus restricting their application in advanced confidential information protection. Reported here is a strategy to design responsive photonic barcodes with heterobimetallic (Tb3+/Eu3+) metal—organic framework multicolor heterostructures. The spatial colors could be precisely controlled by thermally manipulating the energy-transfer process between the two lanthanides, thus achieving responsive covert photonic barcodes. Also demonstrated is that spatially resolved responsive barcodes with multi-responsive features could be created in a single heterostructure. These findings offer unique opportunities to purposely design highly integrated responsive microstructures and smart devices toward advanced anti-counterfeiting applications.  相似文献   
67.
Caffeine (CA) is a common xanthine alkaloid found in tea leaves, coffee beans, and other natural plants, and is the most widely used psychotropic substance in the world. Accumulating evidence suggests that low plasma levels of CA and its metabolites may serve as reliable diagnostic markers for early Parkinson's disease (PD) patients. In this study, we demonstrated a new MEKC method for determining CA and its three main downstream metabolites, paraxanthine (PX), theobromine (TB), and theophylline (TP), in human plasma. Plasma samples were collected, and analyzed using MEKC, after SPE. The running buffer was composed of 35 mM phosphate, pH of 10.5, and 25 mM SDS. The separation voltage was 15 kV and the detection wavelength was at 210 nm. Under the optimum conditions, four distinct analytes were completely separated and detected in less than 12 min. Method limits of detection were as low as 7.5 ng/mL for CA, 5.0 ng/mL for TB, and 4.0 ng/mL for both PX and TP. The recoveries were between 88.0% and 105.9%. This method was successfully applied to 27 human plasma samples. The results indicate that the plasma concentrations of the four analytes are significantly lower in patients with early PD than in control subjects (p < 0.05). The area under curve was improved to 0.839 when CA and its three main metabolites were included, suggesting that MEKC testing of CA, TP, TB, and PX may serve as a potential method for early diagnosis of PD.  相似文献   
68.
Cu-Fe-S-based compounds gain the interest from thermoelectric community because all the consisting elements, Cu, Fe, and S, are non-toxic and earth-abundant. Comparing with CuFeS2 and Cu5FeS4, the investigation on Cu9Fe9S16 is very rare. In this work, a series of Cu9–xFe9+xS16 samples were fabricated by means of melting-annealing process. Their phase composition, microstructure, electrical and thermal transport properties were systematically investigated. X-ray measurement confirms that all samples are phase pure. Transmission electron microscopy characterization indicates that the fabricated Cu9Fe9S16 has a natural nanostructure. Cu9Fe9S16 shows semiconducting-like electrical transport behavior and intrinsically low lattice thermal conductivity. Beyond the numerous boundaries between nanosized grains, the existence of low-frequency optical phonons is also responsible for the intrinsically low lattice thermal conductivity. Doping Fe at the Cu-sites in Cu9Fe9S16 significantly alters the electrical transport properties by introducing extra carriers. A peak dimensionless figure of merit zT value of 0.21 is obtained at 800 K for pure Cu9Fe9S16, which is comparable with that for CuFeS2.  相似文献   
69.
通过静电吸引策略将具有高度分散性的原子精确纳米团簇[Pd3Cl(PPh2)2(PPh3)3]+(Pd3Cl)负载在介孔SBA-15棒上。结构明确的Pd3Cl/SBA-15催化剂在以水作为溶剂以及温和的反应条件下对催化Sonogashira碳-碳偶联反应展现了较好的催化性能以及循环性。在此基础上,我们研究了Pd3Cl团簇结构与性能之间的关系,并证实内核的Pdδ+(0<δ<2)与配体之间的协同效应是催化反应的关键。  相似文献   
70.
本文基于Flory-Huggins理论,建立理论模型研究水合作用与pH调控两性离子聚合物(ZP)刷的相变行为.理论模型考虑ZP的水合作用,以及ZP刷体系中的静电作用.研究发现,在不同pH条件下,ZP刷的体积分数随着水合作的减弱而的增加.随着pH的变化,ZP刷构象随着水合性转变行为明显改变,这是由于pH调控ZP链单体带有过多的净电荷(正电荷或负电荷),致使ZP链内出现静电排斥导致ZP刷溶胀.另外,当ZP链单体呈现过多的净电荷,会在很大程度上决定ZP刷体系静电势,影响ZP刷的相变行为.通过考察体系自由能,我们还发现,ZP刷体系自由能呈现了极大值,随着pH值的变化,自由能呈现的极大值随之改变,由此表明了体系的不稳定性,进而导致ZP刷体系发生相变.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号