首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17042篇
  免费   2683篇
  国内免费   1919篇
化学   12411篇
晶体学   190篇
力学   1175篇
综合类   136篇
数学   2032篇
物理学   5700篇
  2024年   38篇
  2023年   318篇
  2022年   403篇
  2021年   517篇
  2020年   620篇
  2019年   642篇
  2018年   508篇
  2017年   526篇
  2016年   735篇
  2015年   735篇
  2014年   914篇
  2013年   1137篇
  2012年   1518篇
  2011年   1546篇
  2010年   1062篇
  2009年   932篇
  2008年   1084篇
  2007年   983篇
  2006年   977篇
  2005年   793篇
  2004年   604篇
  2003年   546篇
  2002年   549篇
  2001年   461篇
  2000年   346篇
  1999年   364篇
  1998年   293篇
  1997年   271篇
  1996年   300篇
  1995年   235篇
  1994年   208篇
  1993年   159篇
  1992年   175篇
  1991年   174篇
  1990年   128篇
  1989年   123篇
  1988年   82篇
  1987年   70篇
  1986年   80篇
  1985年   60篇
  1984年   54篇
  1983年   44篇
  1982年   32篇
  1981年   31篇
  1980年   29篇
  1978年   24篇
  1977年   25篇
  1976年   23篇
  1974年   20篇
  1973年   26篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
961.
The synthesis, X‐ray crystal structures, electrochemical, and spectroscopic studies of a series of hexanuclear gold(I) μ3‐ferrocenylmethylphosphido complexes stabilized by bridging phosphine ligands, [Au6(P?P)n(Fc‐CH2‐P)2][PF6]2 (n=3, P?P=dppm (bis(diphenylphosphino)methane) ( 1 ), dppe (1,2‐bis(diphenylphosphino)ethane) ( 2 ), dppp (1,3‐bis(diphenylphosphino)propane) ( 3 ), Ph2PN(C3H7)‐PPh2 ( 4 ), Ph2PN(Ph‐CH3p)PPh2 ( 5 ), dppf (1,1′‐bis(diphenylphosphino)ferrocene) ( 6 ); n=2, P?P=dpepp (bis(2‐diphenylphosphinoethyl)phenylphosphine) ( 7 )), as platforms for multiple redox‐active ferrocenyl units, are reported. The investigation of the structural changes of the clusters has been probed by introducing different bridging phosphine ligands. This class of gold(I) μ3‐ferrocenylmethylphosphido complexes has been found to exhibit one reversible oxidation couple, suggestive of the absence of electronic communication between the ferrocene units through the Au6P2 cluster core, providing an understanding of the electronic properties of the hexanuclear AuI cluster linkage. The present complexes also serve as an ideal system for the design of multi‐electron reservoir and molecular battery systems.  相似文献   
962.
Phenylene‐coated organorhodium‐functionalized magnetic nanoparticles are developed through co‐condensation of chiral 4‐(trimethoxysilyl)ethyl)phenylsulfonyl‐1,2‐diphenylethylene‐diamine and 1,4‐bis(triethyoxysilyl)benzene onto Fe3O4 followed complexation with [{Cp*RhCl2}2]. This magnetic catalyst exhibits excellent catalytic activity and high enantioselectivity in asymmetric transfer hydrogenation in aqueous medium. Such activity is attributed to the high hydrophobicity and the confined nature of the chiral organorhodium catalyst. The magnetic catalyst can be easily recovered by using a small external magnet and it can be reused for at least 10 times without loss of its catalytic activity. This characteristic makes it an attractive catalyst for environmentally friendly organic syntheses.  相似文献   
963.
Dependence of the backbone planarity of oligo(p‐phenyleneethynylene)s (OPEs) on the intrinsic electronic character of substituents and on the nature of the solvent has been experimentally demonstrated with a series of center‐symmetrical five‐ring systems, pentiptycene‐pentiptycene‐arene‐pentiptycene‐pentiptycene, differing in the substituents on the central arene. In frozen 2‐methyltetrahydrofuran (MTHF), the adjacent pentiptycene units prefer to be in a mutually twisted orientation when the substituents are electron‐withdrawing (F and amido), resulting in a TPPT or TTTT conformation, whereas a planarized PPPP backbone is favored in the case of electron‐donating substituents (alkyl and alkoxy). The propensity to adopt the PPPP form is generally enhanced by replacing MTHF with either methylcyclohexane or mixed ethanol/methanol as solvent. These observations reveal that the twist between adjacent pentiptycene units in OPEs is a consequence of the electronic rather than steric effects of iptycenyl substituents. The electronic effect of iptycenyl substituents is manifested in decreased phenylene π polarizability as the net effect of both electron‐donating hyperconjugation and an electron‐withdrawing inductive effect. Variable‐temperature electronic absorption and emission spectroscopies are the critical tools for this work. Our findings provide important guidelines for conformational and electronic engineering of OPEs and for the design of novel iptycene‐based organic electronic materials.  相似文献   
964.
Metal–organic frameworks (MOFs) are emerging microporous materials that are promising for capture and sequestration of CO2 due to their tailorable binding properties. However, it remains a grand challenge to pre‐design a MOF with a precise, multivalent binding environment at the molecular level to enhance CO2 capture. Here, we report the design, synthesis, and direct X‐ray crystallographic observation of a porphyrinic MOF, UNLPF‐2, that contains CO2‐specific single molecular traps. Assembled from an octatopic porphyrin ligand with [Co2(COO)4] paddlewheel clusters, UNLPF‐2 provides an appropriate distance between the coordinatively unsaturated metal centers, which serve as the ideal binding sites for in situ generated CO2. The coordination of CoII in the porphyrin macrocycle is crucial and responsible for the formation of the required topology to trap CO2. By repeatedly releasing and recapturing CO2, UNLPL‐2 also exhibits recyclability.  相似文献   
965.
Sensitive and rapid detection of multiple analytes and the collection of components from complex samples are important in fields ranging from bioassays/chemical assays, clinical diagnosis, to environmental monitoring. A convenient strategy for creating magnetically encoded luminescent CdTe@SiO2@n Fe3O4 composite nanoparticles, by using a layer‐by‐layer self‐assembly approach based on electrostatic interactions, is described. Silica‐coated CdTe quantum dots (CdTe@SiO2) serve as core templates for the deposition of alternating layers of Fe3O4 magnetic nanoparticles and poly(dimethyldiallyl ammonium chloride), to construct CdTe@SiO2@n Fe3O4 (n=1, 2, 3, …?) composite nanoparticles with a defined number (n) of Fe3O4 layers. Composite nanoparticles were characterized by zeta‐potential analysis, fluorescence spectroscopy, vibrating sample magnetometry, and transmission electron microscopy, which showed that the CdTe@SiO2@n Fe3O4 composite nanoparticles exhibited excellent luminescence properties coupled with well‐defined magnetic responses. To demonstrate the utility of these magnetically encoded nanoparticles for near‐simultaneous detection and separation of multiple components from complex samples, three different fluorescently labeled IgG proteins, as model targets, were identified and collected from a mixture by using the CdTe@SiO2@n Fe3O4 nanoparticles.  相似文献   
966.
The application of metal–organic polyhedra as “molecular flasks” has precipitated a surge of interest in the reactivity and property of molecules within well‐defined spaces. Inspired by the structures of the natural enzymatic pockets, three metal–organic neutral molecular tetrahedral, Ce‐TTS, Ce‐TNS and Ce‐TBS (H6TTS: N′,N′′,N′′′‐nitrilotris‐4,4′,4′′‐(2‐hydroxybenzylidene)‐benzohydrazide; H6TNS: N′,N′′,N′′′‐nitrilotris‐6,6′,6′′‐(2‐hydroxybenzylidene)‐2‐naphthohydrazide; H6TBS: 1,3,5‐ phenyltris ‐4,4′,4′′‐(2‐hydroxybenzylidene)benzohydrazide), which exhibit different size of the edges and cavities, were achieved through self‐assembly by incorporating robust amide‐containing tridentate chelating sites into the fragments of the ligands. They acted as molecular flasks to prompt the cyanosilylation of aldehydes with excellent selectivity towards the substrates size. The amide groups worked as trigger sites and catalytic driven forces to achieve efficient guest interactions, enforcing the substrates proximity within the cavity. Experiments on catalysts with the different cavity radii and substrates with the different molecular size demonstrated that the catalytic performance exhibited enzymatical catalytic mechanism and occurred in the molecular flask. These amides were also able to amplify guest‐bonding events into the measurable outputs for the detection of concentration variations of the substrates, providing the possibility for metal–organic hosts to work as smart molecular flasks for the luminescent tracing of catalytic reactions.  相似文献   
967.
The first four‐coordinate methanediide/alkyl lutetium complex (BODDI)Lu2(CH2SiMe3)22‐CHSiMe3)(THF)2 (BODDI=ArNC(Me)CHCOCHC(Me)NAr, Ar=2,6‐iPr2C6H3) ( 1 ) was synthesized by a thermolysis methodology through α‐H abstraction from a Lu–CH2SiMe3 group. Complex 1 reacted with equimolar 2,6‐iPrC6H3NH2 and Ph2C?O to give the corresponding lutetium bridging imido and oxo complexes (BODDI)Lu2(CH2SiMe3)22N‐2,6‐iPr2C6H3)(THF)2 ( 2 ) and (BODDI)Lu2(CH2SiMe3)22‐O)(THF)2 ( 3 ). Treatment of 3 with Ph2C?O (4 equiv) caused a rare insertion of Lu–μ2‐O bond into the C?O group to afford a diphenylmethyl diolate complex 4 . Reaction of 1 with PhN=C?O (2 equiv) led to the migration of SiMe3 to the amido nitrogen atom to give complex (BODDI)Lu2(CH2SiMe3)2‐μ‐{PhNC(O)CHC(O)NPh(SiMe3)‐κ3N,O,O}(THF) ( 5 ). Reaction of 1 with tBuN?C formed an unprecedented product (BODDI)Lu2(CH2SiMe3){μ2‐[η22tBuNC(=CH2)SiMe2CHC?NtBu‐κ1N]}(tBuN?C)2 ( 6 ) through a cascade reaction of N?C bond insertion, sequential cyclometalative γ‐(sp3)‐H activation, C?C bond formation, and rearrangement of the newly formed carbene intermediate. The possible mechanistic pathways between 1 , PhN?C?O, and tBuN?C were elucidated by DFT calculations.  相似文献   
968.
A ruthenium‐catalyzed direct C7 amidation of indoline C?H bonds with sulfonyl azides was developed. This procedure allows the synthesis of a variety of 7‐amino‐substituted indolines, which are useful in pharmaceutical. The good functional tolerances, as well as the mild conditions, are prominent feature of this method.  相似文献   
969.
Highly curved buckybowls 3 , 4 , and 5 were synthesized from planar precursors, fluoranthenes 8 , benzo[k]fluoranthenes 10 and naphtho[1,2‐k]‐cyclopenta[cd]fluoranthenes 12 , respectively, using straightforward palladium‐catalyzed cyclization reactions. These fluoranthene‐based starting materials were easily prepared from 1,8‐bis(arylethynyl)naphthalenes 6 . Both buckybowls 3 and 4 are fragments of C60, whereas 5 is a unique subunit of C70. The curved structures were identified by X‐ray crystallography, and they are deep bowls. The maximum π‐orbital axis vector (POAV) pyramidalization angle in both 3 and 4 is 12.8°. Such a high curvature is very rarely obtained. Buckybowls 5 are less curved than the others because they have a lower density of five‐membered rings, analogous to the tube portion of C70. Cyclopentaannulation increases the bowl depths of 3 and 4 , but not the maximum POAV pyramidalization angle. Among the eight buckybowls studied herein, five form polar crystals. The bowl‐to‐bowl inversion dynamics of these buckybowls can be classified into two types; one has a planar transition structure, whereas the other has an S‐shaped transition structure. A larger longitudinal length of these buckybowls corresponds to a stronger preference for the latter. The photophysical properties of these buckybowls were examined and compared with those of C60 and C70. Buckybowls 5 have absorption bands at wavelengths greater than 450 nm, which are similar to those of C70. The chiral resolution of the mono‐substituted buckybowl 4 ac was also studied by using HPLC with a chiral column.  相似文献   
970.
Urea can improve the solubility and stability of cellulose in aqueous alkali solution, while its role has not come to a conclusion. To reveal the role of urea in solution, NMR was introduced to investigate the interaction between urea and the other components in solution. Results from chemical shifts and longitudinal relaxation times show that: (1) urea has no strong direct interaction with cellulose as well as NaOH; (2) urea does not have much influence on the structural dynamics of water. Urea may play its role through van der Waals force. It may accumulate on the cellulose hydrophobic region to prevent dissolved cellulose molecules from re-gathering. The driving force for the self-assembly of cellulose and urea molecules might be hydrophobic interaction. In the process of cellulose dissolution, OH? breaks the hydrogen bonds, Na+ hydrations stabilize the hydrophilic hydroxyl groups and urea stabilizes the hydrophobic part of cellulose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号