首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148052篇
  免费   12639篇
  国内免费   7630篇
化学   73162篇
晶体学   1385篇
力学   11032篇
综合类   310篇
数学   39405篇
物理学   43027篇
  2024年   279篇
  2023年   1601篇
  2022年   2716篇
  2021年   2919篇
  2020年   3107篇
  2019年   2908篇
  2018年   12306篇
  2017年   11953篇
  2016年   9237篇
  2015年   4271篇
  2014年   4409篇
  2013年   5592篇
  2012年   10302篇
  2011年   16734篇
  2010年   9856篇
  2009年   9979篇
  2008年   10887篇
  2007年   12546篇
  2006年   3949篇
  2005年   4382篇
  2004年   3886篇
  2003年   3818篇
  2002年   2718篇
  2001年   1704篇
  2000年   1639篇
  1999年   1681篇
  1998年   1490篇
  1997年   1432篇
  1996年   1483篇
  1995年   1164篇
  1994年   994篇
  1993年   855篇
  1992年   726篇
  1991年   641篇
  1990年   550篇
  1989年   442篇
  1988年   393篇
  1987年   331篇
  1986年   306篇
  1985年   250篇
  1984年   185篇
  1983年   138篇
  1982年   121篇
  1981年   105篇
  1980年   111篇
  1979年   77篇
  1978年   64篇
  1977年   58篇
  1976年   46篇
  1973年   53篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
This paper aims to provide the performance characteristics of proposed, strain balanced direct band gap multiple quantum wells (MQWs) hetero phototransistor (HPT) made of SiGeSn/GeSn alloys grown on Si substrate which is compatible with recent CMOS fabrication technology. This also presents a comprehensive comparison of this proposed structure with the existing HPT structure made of indirect gap Ge/SiGe MQWs. Alloys of Ge and Sn grown on Si platform shows about tenfold increase in absorption over Ge at C and L-bands due to direct nature of band gap in GeSn. Initial work begins the solution of continuity equation to solve the different terminal current densities and optical gain of the multiple quantum well structure. Main analysis was concentrated on finding the external quantum efficiency depending on the doping variations of emitter and base, base width etc. Finally the photocurrent density variations are estimated for the structure and compared with existing indirect band gap HPT. The calculated values for direct band gap GeSn HPT device are found to be comparable with those for indirect band gap SiGe device to flourish as a potential candidate of photo detectors for the present day telecommunication network.  相似文献   
992.
The paper presents the synthesis, characterization, and in vitro cytotoxicity tests of Fe3O4 magnetic nanoclusters coated with ethylenediaminetetraacetic acid disodium salt (EDTA). Electron microscopy analysis (SEM) evidences that magnetite nanoparticles are closely packed into the clusters stabilized with EDTA with well-defined near spherical shapes and sizes in the range 100–200 nm. From XRD measurements, we determined the mean size of the crystallites inside the magnetic cluster about 36 nm. The saturation magnetization determined for the magnetic clusters stabilized with EDTA has high value, about 81.7 emu/g at 300 K. X-ray photoelectron spectroscopy has been used to determine both the elemental and chemical structure of the magnetic cluster surface. In vitro studies have shown that the magnetic clusters at low doses did not induce toxicity on human umbilical vein endothelial cells or lesions of the cell membrane. In contrast, at high doses, the magnetic clusters increased the lipid peroxidation and reduced the leakage of a cytoplasmic enzyme, lactate dehydrogenase (LDH), in parallel with increasing the antioxidant defense.
Graphical abstract SEM images of EDTA-coated magnetic clusters (MCs) and the HUVEC viability at different MC doses
  相似文献   
993.
The gold nanoparticles (AuNPs) are capable of enhancing the incident laser field in the form of scattered near field for even an off-resonance irradiation where the incident laser wavelength is far away from the localized surface plasmon resonance (LSPR). If the intensity of the pulse laser is large enough, this capability can be employed to generate a highly localized free electron (plasma) in the vicinity of the particles. The generated plasma can absorb more energy during the pulse, and this energy deposition can be considered as an energy source for structural mechanics calculations in the surrounding media to generate a photoacoustic (PA) signal. To show this, in this paper, we model plasma-mediated PA pressure wave propagation from a 100-nm AuNPs and the surrounding media irradiated by an ultrashort pulse laser. In this model, the AuNP is immersed in water and the laser pulse width is ranging from 70 fs to 2 ps at the wavelength of 800 nm (off-resonance). Our results qualitatively show the substantial impact of the energy deposition in plasma on the PA signal through boosting the pressure amplitudes up to ~1000 times compared to the conventional approach.  相似文献   
994.
The extensive production and application of engineered silica nanoparticles (SiO2 NPs) will inevitably lead to their release into the environment. Granular media filtration, a widely used process in water and wastewater treatment plants, has the potential for NP abatement. In this work, laboratory-scale column experiments were performed to study the transport and retention of SiO2 NPs on three widely used porous materials, i.e., sand, anthracite, and granular activated carbon (GAC). Synthetic fluorescent core-shell SiO2 NPs (83 nm) were used to facilitate NP detection. Sand showed very low capacity for SiO2 filtration as this material had a surface with limited surface area and a high concentration of negative charge. Also, we found that the stability and transport of SiO2 NP were strongly dependent on the ionic strength of the solution. Increasing ionic strength led to NP agglomeration and facilitated SiO2 NP retention, while low ionic strength resulted in release of captured NPs from the sand bed. Compared to sand, anthracite and GAC showed higher affinity for SiO2 NP capture. The superior capacity of GAC was primarily due to its porous structure and high surface area. A process model was developed to simulate NP capture in the packed bed columns and determine fundamental filtration parameters. This model provided an excellent fit to the experimental data. Taken together, the results obtained indicate that GAC is an interesting material for SiO2 NP filtration.  相似文献   
995.
Patents are an essential information source used to monitor, track, and analyze nanotechnology. When it comes to search nanotechnology-related patents, a keyword search is often incomplete and struggles to cover such an interdisciplinary discipline. Patent classification schemes can reveal far better results since they are assigned by experts who classify the patent documents according to their technology. In this paper, we present the most important classifications to search nanotechnology patents and analyze how nanotechnology is covered in the main patent classification systems used in search systems nowadays: the International Patent Classification (IPC), the United States Patent Classification (USPC), and the Cooperative Patent Classification (CPC). We conclude that nanotechnology has a significantly better patent coverage in the CPC since considerable more nanotechnology documents were retrieved than by using other classifications, and thus, recommend its use for all professionals involved in nanotechnology patent searches.  相似文献   
996.
Single-walled carbon nanotubes (SWNTs) are 1D nanostructures with distinct physical and chemical properties that have shown great promise for applications in many fields, including biomedicine. Since for biomedical application the water solubility is crucial and SWNTs have low solubility, various methods (including polymer and biopolymer wrapping, chemical modifications) have been developed to solubilize and disperse them in water. Due to their unique optical properties such as photoluminescence in the NIR and strong resonant Raman signatures, they can be used as nanoprobes in biomedical imaging and phototherapies. Furthermore, decoration of SWNTs with noble metal nanoparticles will induce an excellent surface-enhanced Raman scattering (SERS) effect of the nanoparticles-SWNTs composites, with applications in cell imaging. Herein, we present a new and facile strategy for the DNA-assisted decoration of SWNTs with gold nanoparticles (AuNPs) and their application in SERS imaging. By ultrasonication at room temperature of SWNTs with AuNPs functionalized with synthetic DNA, SWNT-AuNPs nanocomposites with enhanced Raman signal were obtained. Among the important advantages of the proposed method are the presence of the free DNA overhangs around the SWNT-AuNPs suitable for post-synthetic modification of nanocomposite through hybridization of complementary DNA strands containing molecules of interest attached by well-developed bio-conjugation chemistry.
Graphical abstract ?
  相似文献   
997.
Recently, targeted drug delivery systems (TDDS) have offered a great potential and benefits towards the anti-tumor drug delivery. In this work, we designed the TDDS using a biocompatible poly(ethylene glycol)-poly(β-amino esters) amphiphilic block copolymer (PEG-PAEs) synthesized by Michael addition polymerization for combinatorial therapy. Further, the chemotherapeutic agents’ doxorubicin (DOX) and AS1411 DNA aptamer (Apt) are encapsulated in the PEG-PAEs NPs (PDANs) for co-delivery therapeutics. PDANs have shown the monodisperse spherical shape, smooth surface with a net positive charge (average diameter—183.1 ± 27.2 nm, zeta potential—31.2 ± 6.3 mV), and good colloidal stability (critical micelle concentration of PEG-PAEs is about 6.3 μg/mL). The pH-sensitive PAEs endowed PDANs both pH-triggered drug release characteristics and enhanced endo/lysosomal escape ability, thus improving the localization and cytotoxicity of DOX. AS1411 Apt conjugated PDANs precisely targeted nucleolin and their uptake correlates to a significant activity enhancement only in tumor cells (MCF-7) but not in normal cells (MCF-10A). Thus, PDANs can be a very promising targeted drug delivery platform for effective breast cancer therapy.
Graphical abstract Scheme 1 Schematic illustration of the preparation and cellular uptake of targeted co-delivery system
  相似文献   
998.
In this work, highly activated graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite adsorbent was prepared from a simple hydrothermal route by using ferrous sulfate as precursor. For this purpose, the graphene oxide/multiwalled carbon nanotube architectures were formed through the π-π attractions between them, followed by attaching Fe3O4 nanoparticles onto their surface. The structure and composition of as-prepared ternary nanocomposite were characterized by XRD, FTIR, XPS, SEM, TEM, Raman, TGA, and BET. It was found that the resultant porous graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite with large surface area could effectively prevent the π-π stacking interactions between graphene oxide nanosheets and greatly improve sorption sites on the surfaces. Thus, owing to the unique ternary nanocomposite architecture and synergistic effect among various components, as-prepared ternary nanocomposite exhibited high separation efficiency when they were used to remove the Cu (II) and methylene blue from aqueous solutions. Furthermore, the adsorption isotherms of ternary nanocomposite structures for Cu (II) and methylene blue removal fitted the Langmuir isotherm model. This work demonstrated that the graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite was promising as an efficient adsorbent for heavy metal ions and organic dye removal from wastewater in low concentration.  相似文献   
999.
Aqueous reactions support the preparation of a wide variety of inorganic nanoparticles (NPs), starting from relatively inexpensive precursors. However, the long-term stability of hydrosols is sensitive to changes in water chemistry, especially at high NP concentrations. On the other hand, by using an appropriate stabilizer, NPs prepared in organic phases more commonly display smaller sizes, higher stability, and monodispersity. Subsequently, phase transfer of freshly prepared NPs from an aqueous medium into an organic carrier constitutes a reliable and inexpensive route for preparing highly concentrated and stable organosols. The reverse transfer serves the preparation of small-sized and highly monodispersed hydrosols. The kinetics of phase transfer and the stability of the resultant sols are key considerations and are reliant on mixing and on the hydrophilic/lipophilic balance (HLB) of the particles. This balance is in turn dependent on the surface interaction between the phase transfer agent and the particles, as well as the interactions between the phase transfer agent, the continuous phase, and other additives, whenever applicable. This article reviews different studies that examined the phase transfer of NPs between organosols and hydrosols and elucidates the governing interactions. Scale-up of this preparation route lies in readily dispersible dried coated particles, or stable highly concentrated sols. Particle-independent multi-cycle phase transfer, with a minimum effect on NP size, monodispersity, and functionality is an attractive frontier.
Graphical abstract ?
  相似文献   
1000.
We study fundamental modes trapped in a rotating ring with a saturated nonlinear double-well potential. This model, which is based on the nonlinear Schrödinger equation, can be constructed in a twisted waveguide pipe in terms of light propagation, or in a Bose–Einstein condensate (BEC) loaded into a toroidal trap under a combination of a rotating π-out-of-phase linear potential and nonlinear pseudopotential induced by means of a rotating optical field and the Feshbach resonance. Three types of fundamental modes are identified in this model, one symmetric and the other two asymmetric. The shape and stability of the modes and the transitions between different modes are investigated in the first rotational Brillouin zone. A similar model used a Kerr medium to build its nonlinear potential, but we replace it with a saturated nonlinear medium. The model exhibits not only symmetry breaking, but also symmetry recovery. A specific type of unstable asymmetric mode is also found, and the evolution of the unstable asymmetric mode features Josephson oscillation between two linear wells. By considering the model as a configuration of a BEC system, the ground state mode is identified among these three types, which characterize a specific distribution of the BEC atoms around the trap.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号