首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5546篇
  免费   1003篇
  国内免费   759篇
化学   4086篇
晶体学   81篇
力学   423篇
综合类   84篇
数学   601篇
物理学   2033篇
  2024年   21篇
  2023年   111篇
  2022年   206篇
  2021年   227篇
  2020年   279篇
  2019年   239篇
  2018年   204篇
  2017年   226篇
  2016年   273篇
  2015年   305篇
  2014年   372篇
  2013年   426篇
  2012年   519篇
  2011年   533篇
  2010年   375篇
  2009年   382篇
  2008年   339篇
  2007年   289篇
  2006年   259篇
  2005年   245篇
  2004年   212篇
  2003年   167篇
  2002年   174篇
  2001年   180篇
  2000年   111篇
  1999年   111篇
  1998年   89篇
  1997年   65篇
  1996年   82篇
  1995年   47篇
  1994年   63篇
  1993年   35篇
  1992年   24篇
  1991年   24篇
  1990年   19篇
  1989年   12篇
  1988年   15篇
  1987年   8篇
  1986年   13篇
  1985年   7篇
  1984年   2篇
  1983年   4篇
  1982年   8篇
  1981年   2篇
  1980年   3篇
  1975年   1篇
排序方式: 共有7308条查询结果,搜索用时 27 毫秒
991.
The infrared (IR)-vacuum ultraviolet (VUV)-pulsed field ionization-photoelectron (IR-VUV-PFI-PE) spectrum for C2H4(X1A(g), v11 = 1, N'(Ka'Kc') = 3(03)) in the VUV range of 83,000-84,800 cm(-1) obtained using a single mode infrared laser revealed 24 rotationally resolved vibrational bands for the ion C2H4(+)(X2B(3u)) ground state. The frequencies and symmetry of the vibrational bands thus determined, together with the anharmonic frequency predictions calculated at the CCSD(T)/aug-cc-pVQZ level, have allowed the unambiguous assignment of these vibrational bands. These bands are mostly combination bands. The measured frequencies of these bands yield the fundamental frequencies for v8+ = 1103 +/- 10 cm(-1) and v10+ = 813 +/- 10 cm(-1) of C2H4(+)(X2B(3u)), which have not been determined previously. The present IR-VUV-PFI-PE study also provides truly rovibrationally selected and resolved state-to-state cross sections for the photoionization transitions C2H4(X1A(g); v11, N'(Ka'Kc')) --> C2H4(+)(X2B(3u); vi+, N+(Ka+Kc+)), where N'(Ka'Kc') denotes the rotational level of C2H4(X1A(g); v11), and vi+ and N+(Ka+Kc+) represent the vibrational and rotational states of the cation.  相似文献   
992.
A new construction of quantum error-correcting codes   总被引:1,自引:0,他引:1  
In this paper, we present a characterization of (binary and non-binary) quantum error-correcting codes. Based on this characterization, we introduce a method to construct -ary quantum codes using Boolean functions satisfying a system of certain quadratic relations. As a consequence of the construction, we are able to construct quantum codes of minimum distance . In particular, we produce a class of binary quantum -codes for odd length . For , this improves the result by Rains in Quantum codes of minimal distance two, 1999, showing the existence of binary quantum -codes for odd . Moreover, our binary quantum -codes of odd length achieve the Singleton bound asymptotically.

Finally, based on our characterization some propagation rules of quantum codes are proposed and the rules are similar to those in classical coding theory. It turns out that some new quantum codes are found through these propagation rules.

  相似文献   

993.
Harnessing the potential of thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) is crucial for developing light-emitting diodes (LEDs), lasers, sensors, and many others. However, effective strategies in this domain are still relatively scarce. This study presents a new approach to achieving highly efficient deep-blue TADF (with a PLQY of 25 %) and low-energy orange RTP (with a PLQY of 90 %) through the fabrication of lead-free hybrid halides. This new class of monomeric and dimeric 0D antimony halides can be facilely synthesized using a bottom-up solution process, requiring only a few seconds to minutes, which offer exceptional stability and nontoxicity. By leveraging the highly adaptable molecular arrangement and crystal packing modes, the hybrid antimony halides demonstrate the ability to self-assemble into regular 1D microrod and 2D microplate morphologies. This self-assembly is facilitated by multiple non-covalent interactions between the inorganic cores and organic shells. Notably, these microstructures exhibit outstanding polarized luminescence and function as low-dimensional optical waveguides with remarkably low optical-loss coefficients. Therefore, this work not only presents a pioneering demonstration of deep-blue TADF in hybrid antimony halides, but also introduces 1D and 2D micro/nanostructures that hold promising potential for applications in white LEDs and low-dimensional photonic systems.  相似文献   
994.
Molecular recognition of complex isomeric biomolecules remains challenging in surface-enhanced Raman scattering (SERS) spectroscopy due to their small Raman cross-sections and/or poor surface affinities. To date, the use of molecular probes has achieved excellent molecular sensitivities but still suffers from poor spectral specificity. Here, we induce “charge and geometry complementarity” between probe and analyte as a key strategy to achieve high spectral specificity for effective SERS molecular recognition of structural analogues. We employ 4-mercaptopyridine (MPY) as the probe, and chondroitin sulfate (CS) disaccharides with isomeric sulfation patterns as our proof-of-concept study. Our experimental and in silico studies reveal that “charge and geometry complementarity” between MPY's binding pocket and the CS sulfation patterns drives the formation of site-specific, multidentate interactions at the respective CS isomerism sites, which “locks” each CS in its analogue-specific complex geometry, akin to molecular docking events. Leveraging the resultant spectral fingerprints, we achieve > 97 % classification accuracy for 4 CSs and 5 potential structural interferences, as well as attain multiplex CS quantification with < 3 % prediction error. These insights could enable practical SERS differentiation of biologically important isomers to meet the burgeoning demand for fast-responding applications across various fields such as biodiagnostics, food and environmental surveillance.  相似文献   
995.
Protein coronas are present extensively at the bio-nano interface due to the natural adsorption of proteins onto nanomaterials in biological fluids. Aside from the robust property of nanoparticles, the dynamics of the protein corona shell largely define their chemical identity by altering interface properties. However, the soft coronas are normally complex and rapidly changing. To real-time monitor the entire formation, we report here a self-regulated electrochemiluminescence (ECL) microscopy based on the interaction of the Ru(bpy)33+ with the nanoparticle surface. Thus, the heterogeneity of the protein corona is in situ observed in single nanoparticle “cores” before and after loading drugs in nanomedicine carriers. The label-free, optical stable and dynamic ECL microscopy minimize misinterpretations caused by the variation of nanoparticle size and polydispersity. Accordingly, the synergetic actions of proteins and nanoparticles properties are uncovered by chemically engineered protein corona. After comparing the protein corona formation kinetics in different complex systems and different nanomedicine carriers, the universality and accuracy of this technique were well demonstrated via the protein corona formation kinetics curves regulated by competitive adsorption of Ru(bpy)33+ and multiple proteins on surface of various carriers. The work is of great significance for studying bio-nano interface in drug delivery and targeted cancer treatment.  相似文献   
996.
Although large amount of effort has been invested in combating thermal quenching that severely degrades the performance of luminescent materials particularly at high temperatures, not much affirmative progress has been realized. Herein, we demonstrate that the Frenkel defect formed via controlled annealing of Sc2(WO4)3:Ln (Ln=Yb, Er, Eu, Tb, Sm), can work as energy reservoir and back-transfer the stored excitation energy to Ln3+ upon heating. Therefore, except routine anti-thermal quenching, thermally enhanced 415-fold downshifting and 405-fold upconversion luminescence are even obtained in Sc2(WO4)3:Yb/Er, which has set a record of both the Yb3+-Er3+ energy transfer efficiency (>85 %) and the working temperature at 500 and 1073 K, respectively. Moreover, this design strategy is extendable to other hosts possessing Frenkel defect, and modulation of which directly determines whether enhanced or decreased luminescence can be obtained. This discovery has paved new avenues to reliable generation of high-temperature luminescence.  相似文献   
997.
The development of catalytic asymmetric reaction with water as the reactant is challenging due to the reactivity- and stereoselectivity-control issues resulted from the low nucleophilicity and the small size of water. We disclose herein a chiral phosphoric acid (CPA) catalyzed atroposelective ring-opening reaction of biaryl oxazepines with water. A series of biaryl oxazepines undergo the CPA catalyzed asymmetric hydrolysis in a highly enantioselective manner. The key for the success of this reaction is the use of a new SPINOL-derived CPA catalyst and the high reactivity of biaryl oxazepine substrates towards water under acidic conditions. Density functional theory calculations suggest that the reaction proceeds via a dynamic kinetic resolution pathway and the CPA catalyzed addition of water to the imine group is both enantio- and rate-determining.  相似文献   
998.
Photocatalytic organic functionalization reactions represent a green, cost-effective, and sustainable synthesis route for value-added chemicals. However, heterogeneous photocatalysis is inefficient in directly activating ammonia molecules for the production of high-value-added nitrogenous organic products when compared with oxygen activation in the formation of related oxygenated compounds. In this study, we report the heterogeneous photosynthesis of benzonitriles by the ammoxidation of benzyl alcohols (99 % conversion, 93 % selectivity) promoted using BiOBr nanosheets with surface vacancy associates. In contrast, the main reaction of catalysts with other types of vacancy sites is the oxidation of benzyl alcohol to benzaldehyde or benzoic acid. Experimental measurements and theoretical calculations have demonstrated a specificity of vacancy type with respect to product selectivity, which arises from the adsorption and activation of NH3 and O2 that is required to promote subsequent C−N coupling and oxidation to nitrile. This study provides a better understanding of the role of vacancies as catalytic sites in heterogeneous photocatalysis.  相似文献   
999.
A flameless atomizer for atomic fluorescence spectrometry (AFS), based on an atmospheric pressure dielectric barrier discharge, has been developed for the atomization of hydride-forming elements, such as Se, Sb and Pb. The atomizer (8 mm o.d, 35 mm length) was operated at a power less than 50 W. The discharge was sustained with argon at the flow rate of 0.85 L min− 1 after optimization. The characteristics of the atomizer and the effects of different parameters (power, gas flow rate, and KBH4 concentration) are investigated. The most attractive feature of this atomizer is its low operation temperature (~ 52 °C, detected at the outlet of the atomizer by a thermocouple), allowing both the radiation source and the detector to be placed in close proximity with the atomizer. The analytical performance of the atomizer has been evaluated, and detection limits for Se, Sb and Pb obtained with the present technique were 0.08, 0.11 and 0.27 μg L− 1, respectively. The accuracy of the system was verified by the determination of Se, Sb and Pb in reference material of spinage GBW 10015. The concentrations of Se, Sb, and Pb determined by the present technique agreed well with the reference values (Se: 92 ± 24 mg kg− 1, Sb: 43 ± 14 mg kg− 1, Pb: 11.1 ± 0.9 mg kg− 1). This detector is very promising for field elements detection with portable AFS.  相似文献   
1000.
The present study reports the proof of principle of a reagentless aptameric sensor based on surface-enhanced Raman scattering (SERS) spectroscopy with "signal-on" architecture using a model target of cocaine. This new aptameric sensor is based on the conformational change of the surface-tethered aptamer on a binding target that draws a certain Raman reporter in close proximity to the SERS substrate, thereby increasing the Raman scattering signal due to the local enhancement effect of SERS. To improve the response performance, the sensor is fabricated from a cocaine-templated mixed self-assembly of a 3'-terminal tetramethylrhodamine (TMR)-labeled DNA aptamer on a silver colloid film by means of an alkanethiol moiety at the 5' end. This immobilization strategy optimizes the orientation of the aptamer on the surface and facilitates the folding on the binding target. Under optimized assay conditions, one can determine cocaine at a concentration of 1 muM, which compares favorably with analogous aptameric sensors based on electrochemical and fluorescence techniques. The sensor can be readily regenerated by being washed with a buffer. These results suggest that the SERS-based transducer might create a new dimension for future development of aptameric sensors for sensitive determination in biochemical and biomedical studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号