The density of the LiF-Li2CO3 melts system was measured using the Archimedean method. Using the quadratic regression orthogonal design with two factors, a regression equation for the density of LiF-Li2CO3 melts was obtained in which the concentration of LiF and temperature were considered. The results indicated that the density of the LiF-Li2CO3 melts decreased with either increasing the concentration of LiF or increasing temperature; a linear relation was observed between density and temperature. In addition, the influences of NaF, KF, NaCl, and KCl additives on the densities of the given systems were studied. The addition of NaF and KF increased the density of the melts, whereas NaCl and KCl resulted in an initial increase and subsequent decrease with an increasing additive concentration. The density attained a maximum at NaCl and KCl mass fraction of approximately 15%. 相似文献
A facile and efficient one-pot synthesis of polysubstituted benzenes was achieved via the Michael addition of malononitrile with α,β-unsaturated imines and a sequential tandem reaction. This reaction generates polysubstituted 2,6-dicyanoanilines in high yields (15 examples, isolated yields of 57–91 %), and proceeds under mild reaction conditions (60°C, 10 min). In addition, a possible mechanism accounting for the reaction is proposed. 相似文献
With the calorimetric (adsorption heat versus coverage) curve also measured together with the adsorption isotherm, the simultaneous use of both curves showed that there were two phases of adsorption in the adsorption of methanol, dimethyl ether, ethene and propane in SAPO-34. The dual-site Langmuir equation gave good fits to the adsorption data to support the interpretation that a second (type 2) adsorption phase occurred in the high-pressure region in addition to a first (type 1) adsorption phase on the acid sites at lower pressures. Adsorption experiments and calculations using binary gas mixtures showed that due to the existence of two types of adsorption, the multicomponent Langmuir isotherm equation (Langmuir competitive adsorption model) calculated incorrect surface concentrations when the concentrations were high. In contrast, the ideal adsorbed solution theory (IAST) calculated correct surface concentrations in the adsorption of mixtures. 相似文献
Hemoglobin (Hb) has been demonstrated to endow electrochemical sensors with pH-switchable response because of the presence of carboxyl and amino groups. Hb was deposited in a chitosan matrix on a glassy carbon electrode (GCE) that was previously coated with clustered gold nanoparticles (Au-NPs) by electrodeposition. The switching behavior is active (“on”) to the negatively charged probe [Fe(CN)63−] at pH 4.0, but inactive (“off”) to the probe at pH 8.0. This switch is fully reversible by simply changing the pH value of the solution and can be applied for pH-controlled reversible electrochemical reduction of H2O2 catalyzed by Hb. The modified electrode was tested for its response to the different electroactive probes. The response to these species strongly depends on pH which was cycled between 4 and 8. The effect is also attributed to the presence of pH dependent charges on the surface of the electrode which resulted in either electrostatic attraction or repulsion of the electroactive probes. The presence of Hb, in turn, enhances the pH-controllable response, and the electrodeposited Au-NPs improve the capability of switching. This study reveals the potential of protein based pH-switchable materials and also provides a simple and effective strategy for fabrication of switchable chemical sensors as exemplified in a pH-controllable electrode for hydrogen peroxide.
Hetero-dimeric magnetic nanoparticles of the type Au-Fe3O4 have been synthesised from separately prepared, differently shaped (spheres and cubes), monodisperse nanoparticles. This synthesis was achieved by the following steps: (a) Mono-functionalising each type of nanoparticles with aldehyde functional groups through a solid support approach, where nanoparticle decorated silica nanoparticles were fabricated as an intermediate step; (b) Derivatising the functional faces with complementary functionalities (e.g. amines and carboxylic acids); (c) Dimerising the two types of particles via amide bond formation. The resulting hetero-dimers were characterised by high-resolution TEM, Fourier transform IR spectroscopy and other appropriate methods.
Conjugated microporous polymers (CMPs) have recently received extensive attention in oil/organic solvent-water separation field as a kind of ideal porous absorbents with tunable porosity, large surface areas, and super-hydrophobicity. However, reports on the application of CMPs in adsorption of hydrophilic contaminants from water are very few. In this work, we studied the adsorption of metronidazole (MNZ), a polar antibiotic, by two kinds of CMPs. The adsorption characteristics of MNZ by the CMPs, including adsorption kinetics, mechanism, and isotherm parameters were calculated. The adsorption kinetics of MNZ was well expressed by the pseudo-second-order model, and the adsorption process was found to be mainly controlled by film diffusion. The adsorption isotherm data agreed well with the Langmuir isotherm model, and the values of free energy E indicated that the adsorption nature of MNZ on the CMPs was physisorption. Increasing dispersion degree of the CMPs in MNZ solution resulted in greater adsorption. This work may provide fundamental guidance for the removal of antibiotics by CMPs. 相似文献
High-internal-phase-emulsion polymers (polyHIPEs) show great promise as solid-phase-extraction (SPE) materials because of the tremendous porosity and highly interconnected framework afforded by the high-internal-phase-emulsion (HIPE) technique. In this work, polyHIPE monolithic columns as novel SPE materials were prepared and applied to trace enrichment of cytokinins (CKs) from complex plant samples. The polyHIPE monoliths were synthesized via the in-situ polymerization of the continuous phase of a HIPE containing styrene (STY) and divinylbenzene (DVB) in a stainless column, and revealed highly efficient and selective enrichment ability for aromatic compounds. Under the optimized experimental conditions, a method using a monolithic polyHIPE column combined with liquid chromatography–electrospray tandem mass spectrometry (LC–MS–MS) was developed for the simultaneous extraction and sensitive determination of trans-zeatin (tZ), meta-topolin (mT), kinetin (K), and kinetin riboside (KR). The proposed method had good linearity, with correlation coefficients (R2) from 0.9957 to 0.9984, and low detection limits (LODs, S/N?=?3) in the range 2.4–47 pg mL?1 for the four CKs. The method was successfully applied to the determination of CKs in real plant samples, and obtained good recoveries ranging from 68.8 % to 103.0 % and relative standard deviations (RSDs) lower than 16 %. 相似文献
The compounds containing the benzohydrazide (BH) nucleus have a variety of biological activities because of various noncovalent intermolecular interactions. The interplay between anion-π and H-bond interactions, which can affect the activity of compounds, has been investigated in ten substituted BH exposed to the chloride ion using the quantum mechanical calculations. The total interaction energy is separated into the anion-π (ΔEAπ) and H-bond (ΔEHB) contributions where both interactions are presented in the complexes. The electron-withdrawing substituents (EWSs) increase |ΔEAπ| and decrease |ΔEHB|, while reversed changes are observed with the electron-donating substituents (EDSs). In addition, the total binding energy (ΔE) becomes more/less negative in the presence of EWSs/EDSs. The synergetic effects of mentioned interactions and substituent effects have also been investigated using the atoms in molecules (AIM), natural bond orbital (NBO) and molecular electrostatic potential (MEP) analyses. A good correlation is found between the energy data and the Hammett constants, the minimum of electrostatic potential (Vmin) and the results of population analyses. 相似文献