首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36169篇
  免费   5569篇
  国内免费   3624篇
化学   25272篇
晶体学   358篇
力学   2192篇
综合类   241篇
数学   4277篇
物理学   13022篇
  2024年   68篇
  2023年   738篇
  2022年   837篇
  2021年   1233篇
  2020年   1426篇
  2019年   1295篇
  2018年   1118篇
  2017年   1023篇
  2016年   1573篇
  2015年   1552篇
  2014年   1938篇
  2013年   2504篇
  2012年   3202篇
  2011年   3210篇
  2010年   2180篇
  2009年   2050篇
  2008年   2203篇
  2007年   1960篇
  2006年   1842篇
  2005年   1539篇
  2004年   1301篇
  2003年   984篇
  2002年   894篇
  2001年   738篇
  2000年   691篇
  1999年   829篇
  1998年   693篇
  1997年   635篇
  1996年   705篇
  1995年   601篇
  1994年   550篇
  1993年   470篇
  1992年   449篇
  1991年   364篇
  1990年   324篇
  1989年   236篇
  1988年   216篇
  1987年   198篇
  1986年   141篇
  1985年   156篇
  1984年   135篇
  1983年   116篇
  1982年   80篇
  1981年   59篇
  1980年   49篇
  1979年   32篇
  1978年   26篇
  1976年   27篇
  1975年   31篇
  1974年   23篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
The interaction of methoxyethyl functionalized indene compounds (C(9)H(6)-1-R-3-CH(2)CH(2)OMe, R =t-BuNHSiMe(2)(1), Me(3)Si (2), H (3)) with [(Me(3)Si)(2)N](3)Ln(mu-Cl)Li(THF)(3)(Ln=Yb (4), Eu (5)) produced a series of new ytterbium(II) and europium(II) complexes via tandem silylamine elimination/homolysis of the Ln-N (Ln=Yb, Eu) bond. Treatment of the lanthanide(III) amides [(Me(3)Si)(2)N](3)Ln(mu-Cl)Li(THF)(3)(Ln=Yb (4), Eu (5) with 2 equiv. of, 1,2 and 3, respectively, produced, after workup, the ytterbium(II) complexes [eta5:eta1-Me(2)Si(MeOCH(2)CH(2)C(9)H(5))(NHBu-t)](2)Yb(II) (6), (eta5:eta1-MeOCH(2)CH(2)C(9)H(5)SiMe(3))(2)Yb(II) (7), (eta5:eta1-MeOCH(2)CH(2)C(9)H(6))(2)Yb(II)(8) and the corresponding europium(II) complexes [eta5:eta1-Me(2)Si(MeOCH(2)CH(2)C(9)H(5))(NHBu-t)](2)Eu(II)(9), (eta5:eta1-MeOCH(2)CH(2)C(9)H(5)SiMe(3))(2)Eu(II)(10) and (eta5:eta1-MeOCH(2)CH(2)C(9)H(6))(2)Eu(II)(11) in moderate to good yield. In contrast, interaction of the corresponding indene compounds 1, 2 or 3 with the lanthanide amides [(Me(3)Si)(2)N](3)Ln (Ln = Yb, Eu) was not observed, while addition of 0.5 equiv. of anhydrous LiCl to the corresponding reaction mixture produced, after workup, the corresponding ytterbium(II) or europium(II) complexes. All the new compounds were fully characterized by spectroscopic and elemental analyses. The structures of complexes, and were determined by single-crystal X-ray analyses. The catalytic activity of all the ytterbium(II) and europium(II) complexes on MMA polymerization was examined. It was found that all the ytterbium(II) and europium(II) complexes can function as single-component MMA polymerization catalysts. The temperature, solvent and ligand effects on the catalytic activity were studied.  相似文献   
982.
The first asymmetric total synthesis of (+)-migrastatin (1), a macrolide natural product with anti-metastatic properties, has been accomplished. Our concise and flexible approach utilized a Lewis acid-catalyzed diene aldehyde condensation (LACDAC) to install the three contiguous stereocenters and the trisubstituted (Z)-alkene of migrastatin (2 + 3 --> 21). Construction of the two remaining stereocenters and incorporation of the glutarimide-containing side chain was achieved by an anti-selective aldol addition of propionyl oxazolidinone 28 to angelic aldehyde 27, followed by a Horner-Wadsworth-Emmons (HWE) coupling of 32 with glutarimide aldehyde 5. Finally, the assembly of the macrocycle was realized by a highly (E)-selective ring-closing metathesis (35 --> 37). Utilizing the power of diverted total synthesis (DTS), a series of otherwise inaccessible analogues was prepared and evaluated for their potential as tumor cell migration inhibitors in several in vitro assays. These studies revealed a dramatic increase in activity when the natural motif was considerably simplified, presenting macrolactones 45 and 48, as well as macrolactam 55, macroketone 60, and CF(3)-alcohol 71 as promising anti-metastatic agents.  相似文献   
983.
We report a series of experiments and a theoretical model designed to systematically define and evaluate the relative importance of nanoparticle, oligonucleotide, and environmental variables that contribute to the observed sharp melting transitions associated with DNA-linked nanoparticle structures. These variables include the size of the nanoparticles, the surface density of the oligonucleotides on the nanoparticles, the dielectric constant of the surrounding medium, target concentration, and the position of the nanoparticles with respect to one another within the aggregate. The experimental data may be understood in terms of a thermodynamic model that attributes the sharp melting to a cooperative mechanism that results from two key factors: the presence of multiple DNA linkers between each pair of nanoparticles and a decrease in the melting temperature as DNA strands melt due to a concomitant reduction in local salt concentration. The cooperative melting effect, originating from short-range duplex-to-duplex interactions, is independent of DNA base sequences studied and should be universal for any type of nanostructured probe that is heavily functionalized with oligonucleotides. Understanding the fundamental origins of the melting properties of DNA-linked nanoparticle aggregates (or monolayers) is of paramount importance because these properties directly impact one's ability to formulate high sensitivity and selectivity DNA detection systems and construct materials from these novel nanoparticle materials.  相似文献   
984.
p-tert-Butylcalix[8]arene bonded capillaries for open-tubular capillary electrochromatography were prepared with γ-glycidoxypropyltrimethoxysilane as a bridge. The bonded capillary displayed low and steady electroosmotic flow (EOF) values over the pH range from 4 to 9. Detection limits for direct spectrophotometric detection at 277 nm for benzenediols (at a signal to noise ratio of 2) were 0.96 mg l−1 for the unbonded capillary and 1.48 mg l−1 for the bonded capillary, showing that the bonded layer did not show significant absorbance and hence decreased sensitivity. The bonded capillaries showed good separation selectivity for o-, m- and p-benzenediols, α- and β-naphthols, and α- and β-naphthylamines. This selectivity was attributed to significant interactions between the analytes and the bonded p-tert-butylcalix[8]arene, which contributed to the electrochromatographic separation mechanism. The bonded capillaries gave high stability and reproducibility.  相似文献   
985.
The interaction of pinacyanol chloride(PC) with nucleic acids has been investigated by a series of experiments.Extensive hypochromism,appreciable peak shifts,isosbestic points and new peaks of the product of binding to nucleic acids in the spectra were observed.They showed that the interaction between PC and nucleic acids occurred.The results from absorption spectra of DNA,DNA melting,electrophoresis and fluorescence polarization studies have indicated that PC binds to DNA in nonintercalative way.Consistent with the nonintercalation,the studies of fluorescence titration and absorption titration specified that the binding of PC to nucleic acids occurred by an outside stacking binding,in which nucleic acids served for acting templates,The fact that the new absorption peaks of bound PC at ca,485nm are just close to the absorption bands of Haggregate of PC at high concentrations without DNA further supports the outside stacking binding mode,In addition,other evidence indicated that the interaction between PC and nucleic acids is not purely electrostatic.  相似文献   
986.
Proteins separated by two-dimensional (2-D) gel electrophoresis can be visualized using various protein staining methods. This is followed by downstream procedures, such as image analysis, gel spot cutting, protein digestion, and mass spectrometry (MS), to characterize protein expression profiles within cells, tissues, organisms, or body fluids. Characterizing specific post-translational modifications on proteins using MS of peptide fragments is difficult and labor-intensive. Recently, specific staining methods have been developed and merged into the 2-D gel platform so that not only general protein patterns but also patterns of phosphorylated and glycosylated proteins can be obtained. We used the new Pro-Q Diamond phosphoprotein dye technology for the fluorescent detection of phosphoproteins directly in 2-D gels of mouse leukocyte proteins, and Pro-Q Emerald 488 glycoprotein dye to detect glycoproteins. These two fluorescent stains are compatible with general protein stains, such as SYPRO Ruby stain. We devised a sequential procedure using Pro-Q Diamond (phosphoprotein), followed by Pro-Q Emerald 488 (glycoprotein), followed by SYPRO Ruby stain (general protein stain), and finally silver stain for total protein profile. This multiple staining of the proteins in a single gel provided parallel determination of protein expression and preliminary characterization of post-translational modifications of proteins in individual spots on 2-D gels. Although this method does not provide the same degree of certainty as traditional MS methods of characterizing post-translational modifications, it is much simpler, faster, and does not require sophisticated equipment and expertise in MS.  相似文献   
987.
A study has been made of the adsorption, interaction, and spreading of mixtures of anionic and cationic surfactants at the aqueous solution/polyethylene (PE) interface. When a drop of an aqueous solution of an anionic or cationic hydrocarbon-chain surfactant is placed on a highly hydrophobic PE film (contact angle of water > 90 degrees ), it spreads to an area very little larger than that of a drop of water of the same volume. If the anionic and cationic hydrocarbon-chain surfactant solutions are mixed prior to being applied to PE film, synergism is small, if any, and the reproducibility of the experimental results is poor. However, when the cationic and anionic aqueous solutions are applied on the PE film in a sequential manner, a remarkable synergism in spreading is observed and the results are very reproducible. The area spread by an aqueous solution of the anionic-cationic mixture may be more than 400 times that of aqueous solutions of the same volume and surfactant concentration of the individual surfactant components. Previous work in this laboratory on surfactant systems showing synergism in spreading on PE film, but only weak interaction at the aqueous solution/air interface, showed that the synergy was due to changes at the aqueous solution/PE interface and not to the changes at the aqueous solution/air or PE/air interface. Investigation of the adsorption behavior at the aqueous solution/solid interface of two of the anionic-cationic mixtures studied here indicates the reason for differences in spreading behavior observed with different anionic-cationic mixtures. The more similar the adsorption tendencies at the solid/aqueous solution interface of the anionic and cationic surfactants, and the closer their adsorption to an equimolar monolayer there, the stronger their interaction there and the greater their enhancement of the spreading. A mechanism is proposed for the synergy in spreading observed, based upon the difference between the surface tension in the precursor film at the spreading interface and that at the top of the spreading drop.  相似文献   
988.
Novel naphthalocyanine (Nc) nanotubes with special wall structures were fabricated by a template method using Nc molecules as building blocks. Thermal stabilization of the ordered columnar structures of the tetrakis(tert-butyl)naphthalocyanine (Ni-BNc) molecules, induced from the pi-pi interactions in the nanoscale channels of an alumina template, resulted in Nc nanotubes with walls consisting of well-ordered Nc molecular disks. Further thermal treatment of Ni-BNc at 600 degrees C produced carbonized Nc nanotubes containing ordered columnar, graphitic wall structures with the graphene disks arranged perpendicular to the tube axis. These nanotubes may be useful for extending the application of Nc molecules for nanodevice fabrication.  相似文献   
989.
The two families of intermetallic phases REAuAl4Ge2 (1) (RE=Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm and Yb) and REAuAl4(AuxGe1−x)2 (2) (x=0.4) (RE=Ce and Eu) were obtained by the reactive combination of RE, Au and Ge in liquid aluminum. The structure of (1) adopts the space group R-3m (CeAuAl4Ge2, , ; NdAuAl4Ge2, , ; GdAuAl4Ge2, , ; ErAuAl4Ge2, , ). The structure of (2) adopts the tetragonal space group P4/mmm with lattice parameters: , for EuAuAl4(AuxGe1−x)2 (x=0.4). Both structure types present slabs of “AuAl4Ge2” or “AuAl4(AuxGe1−x)2” stacking along the c-axis with layers of RE atoms in between. Magnetic susceptibility measurements indicate that the RE atoms (except for Ce and Eu) possess magnetic moments consistent with +3 species. The Ce atoms in CeAuAl4Ge2 and CeAuAl4(AuxGe1−x)2 (x=0.4) appear to be in a mixed +3/+4 valence state; DyAuAl4Ge2 undergoes an antiferromagnetic transition at 11 K and below this temperature exhibits metamagnetic behavior. The Eu atoms in EuAuAl4(AuxGe1−x)2 (x=0.4) appear to be in a 2+ oxidation state.  相似文献   
990.
Using four basis bets, (6‐311G(d,p), 6‐31+G(d,p), 6‐31++G(2d,2p), and 6‐311++G(3df,3pd), the optimized structures with all real frequencies were obtained at the MP2 level for the dimers CH2O? HF, CH2O? H2O, CH2O? NH3, and CH2O? CH4. The structures of CH2O? HF, CH2O? H2O, and CH2O? NH3 are cycle‐shaped, which result from the larger bend of σ‐type hydrogen bonds. The bend of σ‐type H‐bond O…H? Y (Y?F, O, N) is illustrated and interpreted by an attractive interaction of a chemically intuitive π‐type hydrogen bond. The π‐type hydrogen bond is the interaction between one of the H atoms of CH2O and lone pair(s) on the F atom in HF, the O atom in H2O, or the N atom in NH3. In contrast with the above three dimers, for CH2O? CH4, because there is not a π‐type hydrogen bond to bend its linear hydrogen bond, the structure of CH2O? CH4 is noncyclic shaped. The interaction energy of hydrogen bonds and the π‐type H‐bond are calculated and discussed at the CCSD (T)/6‐311++G(3df,3pd) level. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号