首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3558篇
  免费   172篇
  国内免费   16篇
化学   2746篇
晶体学   29篇
力学   111篇
数学   214篇
物理学   646篇
  2024年   2篇
  2023年   18篇
  2022年   66篇
  2021年   96篇
  2020年   72篇
  2019年   81篇
  2018年   54篇
  2017年   52篇
  2016年   141篇
  2015年   124篇
  2014年   172篇
  2013年   304篇
  2012年   302篇
  2011年   308篇
  2010年   197篇
  2009年   166篇
  2008年   221篇
  2007年   201篇
  2006年   194篇
  2005年   176篇
  2004年   148篇
  2003年   129篇
  2002年   155篇
  2001年   70篇
  2000年   57篇
  1999年   38篇
  1998年   23篇
  1997年   19篇
  1996年   24篇
  1995年   20篇
  1994年   17篇
  1993年   11篇
  1992年   10篇
  1991年   10篇
  1990年   6篇
  1989年   12篇
  1988年   4篇
  1987年   7篇
  1986年   3篇
  1985年   12篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有3746条查询结果,搜索用时 20 毫秒
21.
Exchange biased IrMn/NiFe/IrMn thin films were studied as a function of NiFe thickness. In plane angular dependence of a resonance field distribution which is measured by FMR was analyzed as a combined effect of an unidirectional anisotropy and an uniaxial anisotropy. The unidirectional anisotropic field and the uniaxial anisotropic field were linearly varied with NiFe thickness while the films with a thicker NiFe layer do not follow the linear variation. Resonance field and linewidth variations were also analysed with NiFe thickness.  相似文献   
22.
We study a zero range process on scale-free networks in order to investigate how network structure influences particle dynamics. The zero range process is defined with the rate p(n) = n(delta) at which particles hop out of nodes with n particles. We show analytically that a complete condensation occurs when delta < or = delta(c) triple bond 1/(gamma-1) where gamma is the degree distribution exponent of the underlying networks. In the complete condensation, those nodes whose degree is higher than a threshold are occupied by macroscopic numbers of particles, while the other nodes are occupied by negligible numbers of particles. We also show numerically that the relaxation time follows a power-law scaling tau approximately L(z) with the network size L and a dynamic exponent z in the condensed phase.  相似文献   
23.
We introduce a dynamical model of coupled directed percolation systems with two particle species. The two species A and B are coupled asymmetrically in that A particles branch B particles, whereas B particles prey on A particles. This model may describe epidemic spreading controlled by reactive immunization agents. We study nonequilibrium phase transitions with attention focused on the multicritical point where both species undergo the absorbing phase transition simultaneously. In one dimension, we find that the inhibitory coupling from B to A is irrelevant and the model belongs to the unidirectionally coupled directed percolation class. On the contrary, a mean-field analysis predicts that the inhibitory coupling is relevant and a new universality appears with a variable dynamic exponent. Numerical simulations on small-world networks confirm our predictions.  相似文献   
24.
We considered a Bak-Sneppen model on a Sierpinski gasket fractal. We calculated the avalanche size distribution and the distribution of distances between subsequent minimal sites. To observe the temporal correlations of the avalanche, we estimated the return time distribution, the first-return time, and the all-return time distribution. The avalanche size distribution follows the power law, P(s)∼sτ, with the exponent τ=1.004(7). The distribution of jumping sites also follows the power law, P(r)∼rπ, with the critical exponent π=4.12(4). We observe the periodic oscillation of the distribution of the jumping distances which originated from the jumps of the level when the minimal site crosses the stage of the fractal. The first-return time distribution shows the power law, Pf(t)∼tτf, with the critical exponent τf=1.418(7). The all-return time distribution is also characterized by the power law, Pa(t)∼tτa, with the exponent τa=0.522(4). The exponents of the return time satisfy the scaling relation τf+τa=2 for τf?2.  相似文献   
25.
In the previous paper we studied the transport coefficients of quark–gluon plasma in finite temperature and finite density in vector and tensor modes. In this paper, we extend it to the scalar modes. We work out the decoupling problem and hydrodynamic analysis for the sound mode in charged AdS black hole and calculate the sound velocity, the charge susceptibility and the electrical conductivity. We find that Einstein relation among the conductivity, the diffusion constant and the susceptibility holds exactly.  相似文献   
26.
We present pulsed laser operation in a Nd-doped, Y3Al5O12-based silica fiber. The fiber was fabricated using the rod-in-tube technique with a Nd:YAG crystal rod as the core material and a silica tube for the cladding material. A spectroscopy study revealed that the core region had become amorphous in the process of fiber drawing. Q-switched pulsed laser operation was realized at a wavelength of 1058 nm when the fiber was cladding pumped at a wavelength of 808 nm. The laser delivered 38 μJ of energy in 65 ns pulses. The extracted energy was limited due to the multimodal operation of the fiber. Laser slope efficiency in continuous wave operation reached 52%. The spectroscopic properties of the fabricated fiber are discussed and compared to a Nd:YAG crystal and a Nd:Al-doped silica fiber.  相似文献   
27.
The atomic structure and interfacial bonding of the ordered-and-isolated CaF nanowires on Si(5 5 12)-2 × 1 have been disclosed by scanning tunneling microscopy and synchrotron photoemission spectroscopy. Initially, CaF molecules dissociated from thermally deposited CaF2 molecules are adsorbed preferentially on the chain structures of Si(5 5 12)-2 × 1 held at 500 °C. With increasing CaF2 deposition amount, one-dimensional (1D) CaF nanowires composed of (113) and (111) facets are formed. The line density of these CaF nanowires increases as a function of deposition amount. Finally, at a submonolayer coverage, the surface is saturated with these 1D nanowires except for the (225) subunit, while the original period of Si(5 5 12)-2 × 1, 5.35 nm, is preserved. It has been deduced by the present studies that, owing to these preferential adsorption of CaF and facet-dependent growth of a CaF layer within a unit periodic length of Si(5 5 12)-2 × 1, such a self-limited growth of the CaF nanowire with a high aspect ratio becomes possible.  相似文献   
28.
This article reviews the current status of high-density capacitor for volatile memory devices. The dielectric properties for both the Ta2O5 film and the (Ba, Sr)TiO3 (BST) dielectric materials using either the metal organic chemical vapor deposition (MOCVD) or the atomic layer deposition (ALD) are reviewed briefly. New challenges of dielectric material for the next generation, and serious problems emerged during integration to date using Ta2O5 and BST. The material characteristics of many electrode materials for the high dielectric materials are introduced. We present the basic properties and integration issued for MOCVD-ruthenium (Ru). The second part of this review summarized the failure mechanisms from barrier properties of previously reported diffusion barriers and emphasizes new design concepts of diffusion barrier for high-density memory devices. Finally, the future direction for a diffusion barrier to advance high-density memory capacitors is suggested.  相似文献   
29.
The magnetic field-dependent heavy hole excitonic states in a strained Gao.2Ino.sAs/GaAs quantum dot are investi- gated by taking into account the anisotropy, non-parabolicity of the conduction band, and the geometrical confinement. The strained quantum dot is considered as a parabolic dot of InAs embedded in a GaAs barrier material. The dependence of the effective excitonic g-factor as a function of dot radius and the magnetic field strength is numerically measured. The interband optical transition energy as a function of geometrical confinement is computed in the presence of a mag- netic field. The magnetic field-dependent oscillator strength of interband transition under the geometrical confinement is studied. The exchange enhancements as a function of dot radius are observed for various magnetic field strengths in a strained Gao.2Ino.sAs/GaAs quantum dot. Heavy hole excitonic absorption spectra, the changes in refractive index, and the third-order susceptibility of third-order harmonic generation are investigated in the Gao.2Ino.8As/GaAs quantum dot. The result shows that the effect of magnetic field strength is more strongly dependent on the nonlinear optical property in a low-dimensional semiconductor system.  相似文献   
30.
We grew heterojunction light emitting diode (LED) structures with various n-type semiconducting layers by magnetron sputtering on p-type GaN at high temperature. Because the undoped ZnO used as an active layer was grown under oxygen rich atmosphere, all LED devices showed the EL characteristics corresponding to orange-red wavelength due to high density of oxygen interstitial, which was coincident with the deep level photoluminescence emission of undoped ZnO. The use of the Ga doped layers as a top layer provided the sufficient electron carriers to active region and resulted in the intense EL emission. The LED sample with small quantity of Mg incorporated in MgZnO as an n-type top layer showed more intense emission than the LED with ZnO, in spite of the deteriorated electrical and structural properties of the MgZnO film. This might be due to the improvement of output extraction efficiency induced by rough surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号