首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   10篇
化学   227篇
晶体学   5篇
力学   23篇
数学   71篇
物理学   88篇
  2023年   2篇
  2022年   5篇
  2020年   6篇
  2019年   7篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   11篇
  2014年   6篇
  2013年   12篇
  2012年   22篇
  2011年   18篇
  2010年   14篇
  2009年   8篇
  2008年   9篇
  2007年   16篇
  2006年   12篇
  2005年   14篇
  2004年   19篇
  2003年   17篇
  2002年   16篇
  2001年   7篇
  2000年   10篇
  1999年   15篇
  1998年   3篇
  1996年   3篇
  1995年   6篇
  1994年   6篇
  1993年   4篇
  1992年   6篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   10篇
  1987年   12篇
  1986年   3篇
  1985年   7篇
  1984年   9篇
  1983年   4篇
  1982年   7篇
  1981年   3篇
  1980年   7篇
  1979年   4篇
  1978年   5篇
  1977年   4篇
  1976年   7篇
  1975年   4篇
  1974年   6篇
  1973年   6篇
  1971年   4篇
排序方式: 共有414条查询结果,搜索用时 46 毫秒
71.
Topotecan (TPT) is in clinical use as an antitumor agent. It acts by binding to the covalent complex formed between nicked DNA and topoisomerase I, and inserts itself into the single-strand nick, thereby inhibiting the religation of the nick and acting as a poison. A crystal structure analysis of the ternary complex has shown how the drug binds (B. L. Staker, K. Hjerrild, M. D. Feese, C. A. Behnke, A. B. Burgin, L. Stewart, Proc. Natl. Acad. Sci. U.S.A., 2002, 99, 15 387-15 392), but has left a number of unanswered questions. Herein, we use NMR spectroscopy and molecular modeling to show that the solution structure of a complex of TPT with nicked natural DNA is similar, but not identical to the crystal conformation, and that other geometries are of very low population. We also show that the lactone form of TPT binds approximately 40 times more strongly than the ring-opened carboxylate.  相似文献   
72.
Formation of magnetite nanocrystals by magnetotactic bacteria is controlled by specific proteins which regulate the particles’ nucleation and growth. One such protein is Mms6. This small, amphiphilic protein can self‐assemble and bind ferric ions to aid in magnetite formation. To understand the role of Mms6 during in vitro iron oxide precipitation we have performed in situ pH titrations. We find Mms6 has little effect during ferric salt precipitation, but exerts greatest influence during the incorporation of ferrous ions and conversion of this salt to mixed‐valence iron minerals, suggesting Mms6 has a hitherto unrecorded ferrous iron interacting property which promotes the formation of magnetite in ferrous‐rich solutions. We show ferrous binding to the DEEVE motif within the C‐terminal region of Mms6 by NMR spectroscopy, and model these binding events using molecular simulations. We conclude that Mms6 functions as a magnetite nucleating protein under conditions where ferrous ions predominate.  相似文献   
73.
We report a systematic investigation of the effects and structural requirements for ion suppression in negative ion mode electrospray ionisation mass spectrometry of a series of carboxylic acids and present a structural model rationalising ion suppression effects.  相似文献   
74.
Conducting polymer diffraction gratings on Au substrates have been created using microcontact printing of C18-alkanethiols, followed by electropolymerization of either poly(aniline) (PANI) or poly(3,4-ethylenedioxythiophene) (PEDOT). Soft-polymer replicas of simple diffraction grating masters (1200 lines/mm) were used to define the alkanethiol template for polymer growth. Growth of PANI and PEDOT diffraction gratings was followed in real time, through in situ tapping-mode atomic force microscopy, and by monitoring diffraction efficiency (DE) as a function of grating depth. DE increased as grating depth increased, up to a limiting efficiency (13-26%, with white light illumination), defined by the combined optical properties of the grating and the Au substrate, and ultimately limited by the loss of resolution due to coalescence of the polymer films. Grating efficiency is strongly dependent upon the grating depth and the refractive index contrast between the grating material and the surrounding solutions. Both PEDOT and PANI gratings show refractive index changes as a function of applied potential, consistent with changes in refractive index brought about by the doping/dedoping of the conducting polymer. The DE of PANI gratings are strongly dependent on the pH of the superstrate solution; the maximum sensitivity (DeltaDE/DeltapH) is achieved with PANI gratings held at +0.4 V versus Ag/AgCl, where the redox chemistry is dominated by the acid-base equilibrium between the protonated (emeraldine salt) and deprotonated (emeraldine base) forms of PANI. Simulations of DE were conducted for various combinations of conducting polymer refractive index and grating depth, to compute sensitivity parameters, which are maximized when the grating depth is ca. 50% of its maximum obtainable depth.  相似文献   
75.
76.
Using X-ray diffraction (XRD) and small angle X-ray scattering (SAXS), we probed the nanostructural features of several PECVD grown nc-Si:H thin films with varying crystalline volume fraction. XRD results of a mixed phase film, 70% a-Si:H and 30% c-Si:H, show these crystallites have a preferred [220] orientation in the growth direction. Another film with approximately 90% c-Si also shows elongated grains, but with a preferred [111] orientation. The SAXS results also show an increase in scattering intensity when compared to the mixed phase material. In the mixed phase material, models show that the electron density fluctuations between the amorphous and crystalline phases are not enough to explain the measured SAXS scattering. Hydrogen clustered at the crystallite boundaries and in void regions of the a-Si phase must be included as well.  相似文献   
77.
A new labeling strategy is presented that greatly facilitates the measurement of 2H spin relaxation rates in RNA molecules as a probe of pico- to nanosecond time scale dynamics. In this labeling scheme the sugar positions are uniformly 13C-labeled, with position 2' protonated and all other sites on the sugar deuterated. Pulse sequences are presented for measurement of 2H R1 and R2 relaxation rates at positions 1', 3', and 4' with sensitivity gains that are on the order of 5-fold relative to previous methods that employed random fractional deuteration. The improved sensitivity is transformative and facilitates the study of motion in moderately sized RNA molecules with good sensitivity. The utility of the approach is demonstrated with an application to HIV-2 TAR, where the site-specific measures of molecular dynamics at sugar positions obtained here complement previous studies of dynamics at aromatic sites in the molecule.  相似文献   
78.
Long-range scalar 5J(H1',F) couplings were observed in 5-fluoropyrimidine-substituted RNA. We developed a novel S3E-19F-alpha,beta-edited NOESY experiment for quantitation of these long-range scalar 5J(H1',F) couplings, where the J-couplings can be extracted from inspection of intraresidual (H1',H6) NOE cross-peaks. Quantum chemical calculations were exploited to investigate the relation between scalar couplings and conformations around the glycosidic bond in oligonucleotides. The theoretical dependence of the observed 5J(H1',F) couplings on the torsion angle chi can be described by a generalized Karplus relationship. The corresponding density functional theory (DFT) analysis is outlined. Additional NMR experiments facilitating the resonance assignments of 5-fluoropyrimidine-substituted RNAs are described, and chemical shift changes due to altered shielding in the presence of fluorine-19 (19F) are presented.  相似文献   
79.
A wide range of N,O-bis-acylated hydroxylamine derivatives with chloro or arenesulfonyl leaving groups, and a related set of N-hydroxy-N-acylsulfonamides, have been synthesized and evaluated for nitroxyl (HNO) production. Mechanistic studies have revealed that the observed aqueous chemistry is more complicated than originally anticipated, and have been used to develop a new series of efficient HNO precursors (4u-4x, 7c-7d) with tunable half-lives.  相似文献   
80.
Metabolism of xenobiotics remains a central challenge for the discovery and development of drugs, cosmetics, nutritional supplements, and agrochemicals. Metabolic transformations are frequently related to the incidence of toxic effects that may result from the emergence of reactive species, the systemic accumulation of metabolites, or by induction of metabolic pathways. Experimental investigation of the metabolism of small organic molecules is particularly resource demanding; hence, computational methods are of considerable interest to complement experimental approaches. This review provides a broad overview of structure- and ligand-based computational methods for the prediction of xenobiotic metabolism. Current computational approaches to address xenobiotic metabolism are discussed from three major perspectives: (i) prediction of sites of metabolism (SOMs), (ii) elucidation of potential metabolites and their chemical structures, and (iii) prediction of direct and indirect effects of xenobiotics on metabolizing enzymes, where the focus is on the cytochrome P450 (CYP) superfamily of enzymes, the cardinal xenobiotics metabolizing enzymes. For each of these domains, a variety of approaches and their applications are systematically reviewed, including expert systems, data mining approaches, quantitative structure-activity relationships (QSARs), and machine learning-based methods, pharmacophore-based algorithms, shape-focused techniques, molecular interaction fields (MIFs), reactivity-focused techniques, protein-ligand docking, molecular dynamics (MD) simulations, and combinations of methods. Predictive metabolism is a developing area, and there is still enormous potential for improvement. However, it is clear that the combination of rapidly increasing amounts of available ligand- and structure-related experimental data (in particular, quantitative data) with novel and diverse simulation and modeling approaches is accelerating the development of effective tools for prediction of in vivo metabolism, which is reflected by the diverse and comprehensive data sources and methods for metabolism prediction reviewed here. This review attempts to survey the range and scope of computational methods applied to metabolism prediction and also to compare and contrast their applicability and performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号