首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5137篇
  免费   82篇
  国内免费   30篇
化学   3290篇
晶体学   46篇
力学   184篇
数学   479篇
物理学   1250篇
  2022年   28篇
  2020年   53篇
  2019年   42篇
  2018年   31篇
  2016年   83篇
  2015年   66篇
  2014年   88篇
  2013年   205篇
  2012年   184篇
  2011年   228篇
  2010年   121篇
  2009年   106篇
  2008年   222篇
  2007年   232篇
  2006年   213篇
  2005年   218篇
  2004年   185篇
  2003年   204篇
  2002年   177篇
  2001年   129篇
  2000年   141篇
  1999年   76篇
  1998年   65篇
  1997年   66篇
  1996年   106篇
  1995年   68篇
  1994年   66篇
  1993年   83篇
  1992年   80篇
  1991年   74篇
  1990年   71篇
  1989年   59篇
  1988年   85篇
  1987年   70篇
  1986年   68篇
  1985年   83篇
  1984年   82篇
  1983年   46篇
  1982年   68篇
  1981年   68篇
  1980年   59篇
  1979年   78篇
  1978年   54篇
  1977年   84篇
  1976年   68篇
  1975年   64篇
  1974年   69篇
  1973年   67篇
  1972年   33篇
  1971年   34篇
排序方式: 共有5249条查询结果,搜索用时 15 毫秒
991.
Treatment of [Ir(ppy)2(μ-Cl)]2 and [Ir(ppy)2(dtbpy)][OTf] (ppy = 2-(2′-pyridyl)phenyl; dtbpy = 4,4′-di-tert-butyl-2,2′-bipyridine; OTf = triflate) with pyridinium tribromide in the presence of Fe powder led to isolation of [Ir(4-Br-ppy)(μ-Br)]2 (1) and [Ir(4-Br-ppy)2(dtbpy)][OTf] (2), respectively. Pd-catalyzed cross-coupling of 2 with RB(OH)2 afforded [Ir(4-R-ppy)2(dtbpy)][OTf] (R = 4′-FC6H4 (3)), 4′-PhC6H4 (4), 2′-thienyl (5), 4′-C6H4CH2OH (6). Treatment of 4 with B2(pin)2 (pin = pinacolate) afforded [Ir{4-(pin)B-ppy}2(dtbpy)][OTf] (7). The alkynyl complexes [Ir(4-PhCC-ppy)2(dtbpy)][OTf] (8) and [Ir{4-Me2(OH)CC-ppy}(4-Br-ppy)(dtbpy)][OTf] (9) were prepared by cross-coupling of 2 with PhCCSnMe3 and Me2C(OH)CCH, respectively. Ethynylation of [Ir(fppy)2(dtbpy)][OTf] (fppy = 5-formyl-2-(2′-pyridyl)phenyl) with Ohira’s reagent MeCOC(N2)P(O)(OEt)2 afforded [Ir{5-HCC-ppy}2(dtbpy)][OTf] (10). The solid-state structures of 2, 5, 7, and 10 have been determined.  相似文献   
992.
In the light of the controversy in the area and since reports using simultaneous cooling in conjunction with microwave heating are appearing in the literature, we were keen to assess the methodology, looking at temperature measurement issues as well as the use of the technique in three classes of reaction, namely a Heck coupling, a Diels-Alder cycloaddition and a Michael addition. We present our initial findings here.  相似文献   
993.
The effect of sintering dispersed dispersion and nano-emulsion particles of high molecular weight polytetrafluoroethylene (PTFE) on a substrate as a function of "melt" time and temperature is described. Folded chain single crystals parallel to the substrate and as ribbons on-edge (with double striations), as well as bands, are produced for longer sintering times; particle merger and diffusion of individual molecules, crystallizing as folded chain, single (or few) molecule,single crystals when "trapped" on the substrate by cooling occur for shorter sintering times. It is suggested the observed structures develop with sintering time, in a mesomorphic melt. The structure of the nascent particles is also discussed.  相似文献   
994.
The facile production of ArCF2X and ArCX3 from ArCF3 using catalytic iron(III)halides is reported, which constitutes the first iron-catalyzed halogen exchange for non-aromatic C−F bonds. Theoretical calculations suggest direct activation of C−F bonds by iron coordination. ArCX3 and ArCF2X products of the reaction are synthetically valuable due to their diversification potential. In particular, chloro- and bromodifluoromethyl arenes (ArCF2Cl, ArCF2Br respectively) provide access to a myriad of difluoromethyl arene derivatives (ArCF2R). To optimize for mono-halogen exchange, a statistical method called Design of Experiments was used. Optimized parameters were successfully applied to electron rich and electron deficient aromatic substrates, and to the late stage diversification of flufenoxuron, a commercial insecticide. These methods are highly practical, being run at convenient temperatures and using inexpensive common reagents.  相似文献   
995.
Herein a simple analytical method is presented for the characterization of biomolecule adsorption on cyclo olefin polymer (COP, trade name: Zeonor®) substrates which are widely used in microfluidic lab-on-a-chip devices. These Zeonor® substrates do not possess native functional groups for specific reactions with biomolecules. Therefore, depending on the application, such substrates must be functionalized by surface chemistry methods to either enhance or suppress biomolecular adsorption. This work demonstrates a microfluidic method for evaluating the adsorption of antibodies and oligonucleotides surfaces. The method uses centrifugal microfluidic flow-through chips and can easily be implemented using common equipment such as a spin coater. The working principle is very simple. The user adds 40 L of the solution containing the sample to the starting side of a microfluidic channel, where it is moved through by centrifugal force. Some molecules are adsorbed in the channel. The sample is then collected at the other end in a small reservoir and the biomolecule concentration is measured. As a pilot application, we characterized the adsorption of goat anti-human IgG and a 20-mer DNA on Zeonor®, and on three types of functionalized Zeonor: 3-aminopropyltriethoxysilane (APTES) modified surface with mainly positive charge, negatively charged surface with immobilized bovine serum albumin (BSA), and neutral, hydrogel-like film with polyethylene glycol (PEG) characteristics. This simple analytical approach adds to the fundamental understanding of the interaction forces in real, microfluidic systems. This method provides a straightforward and rapid way to screen surface compositions and chemistry, and relate these to their effects on the sensitivity and resistance to non-specific binding of bioassays using them. In an additional set of experiments, the surface area of the channels in this universal microfluidic chip was increased by precision milling of microscale trenches. This modified surface was then coated with APTES and tested for its potential to serve as a unique protein dilution feature.  相似文献   
996.
Summary NMR studies of the rotation barrier of the disaccharide of the glycopeptide antibiotic vancomycin have been used to test the performance of computer simulation techniques using molecular mechanics. In the absence of any solvated water, no correlation could be found between experiment and calculation. By introducing solvent water molecules into the binding region of the antibiotic, the NMR results could be simulated both qualitatively and quantitatively within experimental error without using massive computational resources.  相似文献   
997.
Wild typeE. coli ferments glucose to a mixture of ethanol and acetic, lactic, formic, and succinic acids. Mutants defective in acid production have now been isolated, including those defective in lactate dehydrogenase (LDH) or with excess alcohol dehydrogenase. These mutations had no phenotype without apfl mutation. Novel mutants affecting acetate metabolism were isolated by insertion of the fusion vector Mudl. TheseaceG mutants cannot grow anaerobically on glucose or aerobically on acetate yet lack the pleiotropic growth defects of previously knownpta/ack mutants. In some genetic backgrounds acetate negative mutations suppress the growth defects ofadh mutations. These results are discussed in terms of redox balance.  相似文献   
998.
999.
1000.
Achiral P‐donor pincer‐aryl ruthenium complexes ([RuCl(PCP)(PPh3)]) 4c , d were synthesized via transcyclometalation reactions by mixing equivalent amounts of [1,3‐phenylenebis(methylene)]bis[diisopropylphosphine] ( 2c ) or [1,3‐phenylenebis(methylene)]bis[diphenylphosphine] ( 2d ) and the N‐donor pincer‐aryl complex [RuCl{2,6‐(Me2NCH2)2C6H3}(PPh3)], ( 3 ; Scheme 2). The same synthetic procedure was successfully applied for the preparation of novel chiral P‐donor pincer‐aryl ruthenium complexes [RuCl(P*CP*)(PPh3)] 4a , b by reacting P‐stereogenic pincer‐arenes (S,S)‐[1,3‐phenylenebis(methylene)]bis[(alkyl)(phenyl)phosphines] 2a , b (alkyl=iPr or tBu, P*CHP*) and the complex [RuCl{2,6‐(Me2NCH2)2C6H3}(PPh3)], ( 3 ; Scheme 3). The crystal structures of achiral [RuCl(equation/tex2gif-sup-3.gifPCP)(PPh3)] 4c and of chiral (S,S)‐[RuCl(equation/tex2gif-sup-6.gifPCP)(PPh3)] 4a were determined by X‐ray diffraction (Fig. 3). Achiral [RuCl(PCP)(PPh3)] complexes and chiral [RuCl(P*CP*)(PPh3)] complexes were tested as catalyst in the H‐transfer reduction of acetophenone with propan‐2‐ol. With the chiral complexes, a modest enantioselectivity was obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号