首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16164篇
  免费   3016篇
  国内免费   2128篇
化学   11848篇
晶体学   210篇
力学   1015篇
综合类   132篇
数学   1634篇
物理学   6469篇
  2024年   77篇
  2023年   367篇
  2022年   719篇
  2021年   660篇
  2020年   786篇
  2019年   806篇
  2018年   674篇
  2017年   634篇
  2016年   874篇
  2015年   926篇
  2014年   1029篇
  2013年   1278篇
  2012年   1554篇
  2011年   1502篇
  2010年   1002篇
  2009年   1081篇
  2008年   1131篇
  2007年   949篇
  2006年   887篇
  2005年   740篇
  2004年   546篇
  2003年   401篇
  2002年   369篇
  2001年   316篇
  2000年   251篇
  1999年   260篇
  1998年   199篇
  1997年   203篇
  1996年   165篇
  1995年   155篇
  1994年   117篇
  1993年   120篇
  1992年   99篇
  1991年   84篇
  1990年   64篇
  1989年   42篇
  1988年   45篇
  1987年   35篇
  1986年   30篇
  1985年   30篇
  1984年   16篇
  1983年   21篇
  1982年   6篇
  1981年   9篇
  1980年   6篇
  1979年   9篇
  1977年   4篇
  1975年   5篇
  1971年   4篇
  1965年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
841.
Many proteins in living organisms are glycosylated. As their glycan patterns exhibit protein-, cell-, and tissue-specific heterogeneity, changes in the glycosylation levels could serve as useful indicators of various pathological and physiological states. Thus, the identification of glycoprotein biomarkers from specific changes in the glycan profiles of glycoproteins is a trending field. Lectin microarrays provide a new glycan analysis platform, which enables rapid and sensitive analysis of complex glycans without requiring the release of glycans from the protein. Recent developments in lectin microarray technology enable high-throughput analysis of glycans in complex biological samples. In this review, we will discuss the basic concepts and recent progress in lectin microarray technology, the application of lectin microarrays in biomarker discovery, and the challenges and future development of this technology. Given the tremendous technical advancements that have been made, lectin microarrays will become an indispensable tool for the discovery of glycoprotein biomarkers.  相似文献   
842.
Azacycles such as indoles and tetrahydroquinolines are privileged structures in drug development. Reported here is an unprecedented regiodivergent intramolecular nucleophilic addition reaction of imines as a flexible approach to access N‐functionalized indoles and tetrahydroquinolines, by the control of reaction at the N‐terminus and C‐terminus, respectively. Using ketimines derived from 2‐(2‐nitroethyl)anilines with isatins or α‐ketoesters, the regioselective N‐attack reaction gives N‐functionalized indoles, while the catalytic enantioselective C‐attack reaction affords chiral tetrahydroquinolines featuring an α‐tetrasubstituted stereocenter. Mechanistic studies reveal that hydrogen‐bonding interactions may greatly facilitate such unusual N‐attack reactions of imines. The utility of this protocol is highlighted by the catalytic enantioselective formal synthesis of (?)‐psychotrimine, and the construction of various fused aza‐heterocycles.  相似文献   
843.
Reversible oxygen conversion is important for various green energy technologies. Herein we synthesize a series of bimetallic coordination polymers by varying the Ni/Co ratio and using HITP (HITP=2,3,6,7,10,11‐hexaiminotriphenylene) as the ligand, to interrogate the role of metal centres in modulating the activity of the oxygen reduction reaction (ORR). Co3HITP2 and Ni3HITP2 are compared. Unpaired 3d electrons in Co3HITP2 result in less coplanarity but more radical character. Thus, despite of a reduced crystallinity and conductivity, the best ORR activity, comparable to 20 % Pt/C, is obtained for Co3HITP2, showing the 3d orbital configuration of the metal centre promotes ORR. Experimental and DFT studies show a transition of ORR pathway from four‐electron for Co3HITP2 to two‐electron for Ni3HITP2. Rechargeable zinc–air batteries using Co3HITP2 as the air cathode catalyst demonstrate excellent energy efficiency and stability.  相似文献   
844.
Encapsulating one to three metal atoms or a metallic cluster inside fullerene cages affords endohedral metallofullerenes (EMFs) classified as mono‐, di‐, tri‐, and cluster‐EMFs, respectively. Although the coexistence of various EMF species in soot is common for rare‐earth metals, we herein report that europium tends to prefer the formation of mono‐EMFs. Mass spectroscopy reveals that mono‐EMFs (Eu@C2n) prevail in the Eu‐containing soot. Theoretical calculations demonstrate that the encapsulation energy of the endohedral metal accounts for the selective formation of mono‐EMFs and rationalize similar observations for EMFs containing other metals like Ca, Sr, Ba, or Yb. Consistently, all isolated Eu‐EMFs are mono‐EMFs, including Eu@D3h(1)‐C74, Eu@C2v(19138)‐C76, Eu@C2v(3)‐C78, Eu@C2v(3)‐C80, and Eu@D3d(19)‐C84, which are identified by crystallography. Remarkably, Eu@C2v(19138)‐C76 represents the first Eu‐containing EMF with a cage that violates the isolated‐pentagon‐rule, and Eu@C2v(3)‐C78 is the first C78‐based EMF stabilized by merely one metal atom.  相似文献   
845.
Integrated differential phase‐contrast scanning transmission electron microscopy (iDPC‐STEM) is capable of directly probing guest molecules in zeolites, owing to its sufficient and interpretable image contrast for both heavy and light elements under low‐dose conditions. This unique ability is demonstrated by imaging volatile organic compounds adsorbed in zeolite Silicalite‐1; iDPC‐STEM was then used to investigate molybdenum supported on various zeolites including Silicalite‐1, ZSM‐5, and mordenite. Isolated single‐Mo clusters were observed in the micropores of ZSM‐5, demonstrating the crucial role of framework Al in driving Mo atomically dispersed into the micropores. Importantly, the specific one‐to‐one Mo‐Al interaction makes it possible to locate Al atoms, that is, catalytic active sites, in the ZSM‐5 framework from the images, according to the positions of Mo atoms in the micropores.  相似文献   
846.
Stimulated emission depletion (STED) microscopy enables ultrastructural imaging of biological samples with high spatiotemporal resolution. STED nanoprobes based on fluorescent organosilica nanohybrids featuring sub‐2 nm size and near‐unity quantum yield are presented. The spin–orbit coupling (SOC) of heavy‐atom‐rich organic fluorophores is mitigated through a silane‐molecule‐mediated condensation/dehalogenation process, resulting in bright fluorescent organosilica nanohybrids with multiple emitters in one hybrid nanodot. When harnessed as STED nanoprobes, these fluorescent nanohybrids show intense photoluminescence, high biocompatibility, and long‐term photostability. Taking advantage of the low‐power excitation (0.5 μW), prolonged singlet‐state lifetime, and negligible depletion‐induced re‐excitation, these STED nanohybrids present high depletion efficiency (>96 %), extremely low saturation intensity (0.54 mW, ca. 0.188 MW cm?2), and ultra‐high lateral resolution (ca. λem/28).  相似文献   
847.
Organic room temperature luminescent materials present a unique phosphorescence emission with a long lifetime. However, many of these materials only emit single blue or green color in spite of external stimulation, and their color tunability is limited. Herein, we report a rational design to extend the emission color range from blue to red by controlling the doping of simple pyrene derivatives into a robust polymer matrix. The integration of these pyrene molecules into the polymer films enhances the intersystem crossing pathway, decreases the first triplet level of the system, and ensures the films show a sensitive response to excitation energy, finally yielding excitation‐dependent long‐life luminescent polymeric systems under ambient conditions. These materials were used to construct anti‐counterfeiting patterns with multicolor interconversion, presenting a promising application potential in the field of information security.  相似文献   
848.
Inhibition of TICT can significantly increase the brightness of fluorescent materials. Accurate prediction of TICT is thus critical for the quantitative design of high‐performance fluorophores and AIEgens. TICT of 14 types of popular organic fluorophores were modeled with time‐dependent density functional theory (TD‐DFT). A reliable and generalizable computational approach for modeling TICT formations was established. To demonstrate the prediction power of our approach, we quantitatively designed a boron dipyrromethene (BODIPY)‐based AIEgen which exhibits (almost) barrierless TICT rotations in monomers. Subsequent experiments validated our molecular design and showed that the aggregation of this compound turns on bright emissions with ca. 27‐fold fluorescence enhancement, as TICT formation is inhibited in molecular aggregates.  相似文献   
849.
An ammonium‐containing metal iodate fluoride compound, (NH4)Bi2(IO3)2F5, featuring a two‐dimensional double‐layered framework constructed by [BiO2F5]6? and [BiO4F4]9? polyhedra, as well as [IO3]? groups, was successfully synthesized. The well‐ordered alignment of these SHG‐active units leads to an extraordinary strong SHG response of 9.2 times that of KDP. Moreover, this compound possesses a large birefringence (Δn=0.0690 at 589.3 nm), a wide energy band gap (Eg=3.88 eV), and a high laser damage threshold (LDT; 40.2×AgGaS2). In particular, thermochromic behavior was observed for the first time in this type of compound. Such multifunctional crystals will expand the application of nonlinear optical materials.  相似文献   
850.
Sulfur‐based homolytic substitution (SH reaction) plays an important role in synthetic chemistry, yet whether such a reaction could occur on the positively charged sulfonium compounds remains unknown. In the study of the anaerobic coproporphyrinogen III oxidase HemN, a radical S‐adenosyl‐l ‐methionine (SAM) enzyme involved in heme biosynthesis, we observed the production of di‐(5′‐deoxyadenosyl)methylsulfonium, which supports a deoxyadenosyl (dAdo) radical‐mediated SH reaction on the sulfonium center of SAM. The sulfonium‐based SH reactions were then investigated in detail by density functional theory calculations and model reactions, which showed that this type of reactions is thermodynamically favorable and kinetically competent. These findings represent the first report of sulfonium‐based SH reactions, which could be useful in synthetic chemistry. Our study also demonstrates the remarkable catalytic promiscuity of the radical SAM superfamily enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号