首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   26篇
  国内免费   45篇
化学   214篇
晶体学   1篇
力学   10篇
综合类   2篇
数学   13篇
物理学   72篇
  2024年   2篇
  2023年   16篇
  2022年   13篇
  2021年   24篇
  2020年   29篇
  2019年   13篇
  2018年   17篇
  2017年   11篇
  2016年   10篇
  2015年   11篇
  2014年   15篇
  2013年   20篇
  2012年   14篇
  2011年   15篇
  2010年   9篇
  2009年   15篇
  2008年   8篇
  2007年   11篇
  2006年   5篇
  2005年   4篇
  2004年   7篇
  2003年   8篇
  2002年   5篇
  2001年   2篇
  1999年   6篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   6篇
  1994年   6篇
  1993年   2篇
  1990年   1篇
  1987年   1篇
  1986年   2篇
  1971年   1篇
排序方式: 共有312条查询结果,搜索用时 15 毫秒
41.
42.
This work demonstrates photoredox vicinal dichlorination of alkenes, based on the homolysis of CuCl2 in response to irradiation with visible light. This catalysis proceeds via a ligand to metal charge transfer process and provides an exciting opportunity for the synthesis of 1,2-dichloride compounds using an inexpensive, low-molecular-weight chlorine source. This new process exhibits a wide substrate scope, excellent functional group tolerance, extraordinarily mild conditions and does not require external ligands. Mechanistic studies show that the ready formation of chlorine atom radicals is responsible for the facile formation of C−Cl bonds in this synthetic process.  相似文献   
43.
In this paper, we investigated the (2+1)-dimensional Konopelchenko–Dubrovsky equation. The lump waves, solitary waves as well as interaction between lump waves and solitary waves are presented based on the Hirota bilinear form of this equation. It is worth noting that the rational solutions are obtained by taking a long wave limit, and we also discussed the lump solutions and rogue wave solutions. Moreover, all these solutions are presented via 3-dimensional plots and density plots with choosing some special parameters to show the dynamic graphs.  相似文献   
44.
Black phosphorus quantum dots (BPQDs) have been prepared by a high turbulent shear rate generated from a household kitchen blender. A layer‐by‐layer disintegration mechanism of bulk BP crystals is suggested. As‐synthesized BPQDs have shown excellent humidity sensing and photothermal converting properties. Importantly, this work not only explores potential applications for the BPQDs but also provides a successful paradigm for preparing the QDs of other layered materials.  相似文献   
45.
A novel method for the stereoselective conjugate addition of 3-substituted oxindoles to in situ generated o-QMs was described. This process was catalyzed efficiently by a cinchonidine-derived squaramide catalyst in oil-water phase, furnishing the corresponding 3,3-disubsituted oxindole derivatives in moderate to high yields (up to 98%) with high stereoselectivities (up to 95%?ee, 15.4:1?dr). The utility of this reaction was also investigated by the gram-scale synthesis and derivatization of one of the products.  相似文献   
46.
The first direct aziridination of triaryl‐substituted alkenes was achieved by means of an electrochemical process that could extend to multisubstituted styrenes. Specifically, hexafluoroisopropanol sulfamate was used as a nucleophilic nitrogen source. Mechanistic experiments suggest that this electrochemical process proceeds by stepwise formation of two C?N bonds through reactions between cationic carbon species and the sulfamate.  相似文献   
47.
Excellent antibacterial property of graphene oxide makes it an important antibacterial material. However, in some cases, a synergistic combination of materials with different antibacterial mechanisms is desired. In this work, we developed a simple two-step protocol to prepare ornidazole (ONZ), a nitroimidazole antiprotozoal drug, loaded graphene-based paper for combined antibacterial materials. Graphene oxide (GO) and reduced graphene oxide (rGO) were used as carriers in antibacterial materials. After mixed with ONZ directly in aqueous media and filtrated under vacuum, the freestanding GO/ONZ and rGO/ONZ were peeled off from the filtrate membrane. The ONZ loading contents in the paper was determined by UV/vis spectroscopy and the surface properties were investigated by measuring their contact angle, which will have an important impact on the antibacterial effects of the papers.  相似文献   
48.
Mimicking the structures and functions of cells to create artificial organelles has spurred the development of efficient strategies for production of hollow nanoreactors with biomimetic catalytic functions. However, such structure are challenging to fabricate and are thus rarely reported. We report the design of hollow nanoreactors with hollow multishelled structure (HoMS) and spatially loaded metal nanoparticles. Starting from a molecular-level design strategy, well-defined hollow multishelled structure phenolic resins (HoMS-PR) and carbon (HoMS-C) submicron particles were accurately constructed. HoMS-C serves as an excellent, versatile platform, owing to its tunable properties with tailored functional sites for achieving precise spatial location of metal nanoparticles, internally encapsulated (Pd@HoMS-C) or externally supported (Pd/HoMS-C). Impressively, the combination of the delicate nanoarchitecture and spatially loaded metal nanoparticles endow the pair of nanoreactors with size–shape-selective molecular recognition properties in catalytic semihydrogenation, including high activity and selectivity of Pd@HoMS-C for small aliphatic substrates and Pd/HoMS-C for large aromatic substrates. Theoretical calculations provide insight into the pair of nanoreactors with distinct behaviors due to the differences in energy barrier of substrate adsorption. This work provides guidance on the rational design and accurate construction of hollow nanoreactors with precisely located active sites and a finely modulated microenvironment by mimicking the functions of cells.  相似文献   
49.
Strong metal–support interactions (SMSI) represent a classic yet fast-growing area in catalysis research. The SMSI phenomenon results in the encapsulation and stabilization of metal nanoparticles (NPs) with the support material that significantly impacts the catalytic performance through regulation of the interfacial interactions. Engineering SMSI provides a promising approach to steer catalytic performance in various chemical processes, which serves as an effective tool to tackle energy and environmental challenges. Our Minireview covers characterization, theory, catalytic activity, dependence on the catalytic structure and inducing environment of SMSI phenomena. By providing an overview and outlook on the cutting-edge techniques in this multidisciplinary research field, we not only want to provide insights into the further exploitation of SMSI in catalysis, but we also hope to inspire rational designs and characterization in the broad field of material science and physical chemistry.  相似文献   
50.
Targeted synthesis of kagome ( kgm ) topologic 2D covalent organic frameworks remains challenging, presumably due to the severe dependence on building units and synthetic conditions. Herein, two isomeric “two-in-one” monomers with different lengths of substituted arms based on naphthalene core (p-Naph and m-Naph) are elaborately designed and utilized for the defined synthesis of isomeric kgm Naph-COFs. The two isomeric frameworks exhibit splendid crystallinity and showcase the same chemical composition and topologic structure with, however, different pore channels. Interestingly, C60 is able to uniformly be encapsulated into the triangle channels of m-Naph-COF via in situ incorporation method, while not the isomeric p-Naph-COF, likely due to the different pore structures of the two isomeric COFs. The resulting stable C60@m-Naph-COF composite exhibits much higher photoconductivity than the m-Naph-COF owing to charge transfer between the conjugated skeletons and C60 guests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号