Despite significant progress achieved in Fischer–Tropsch synthesis (FTS) technology, control of product selectivity remains a challenge in syngas conversion. Herein, we demonstrate that Zn2+‐ion exchanged ZSM‐5 zeolite steers syngas conversion selectively to ethane with its selectivity reaching as high as 86 % among hydrocarbons (excluding CO2) at 20 % CO conversion. NMR spectroscopy, X‐ray absorption spectroscopy, and X‐ray fluorescence indicate that this is likely attributed to the highly dispersed Zn sites grafted on ZSM‐5. Quasi‐in‐situ solid‐state NMR, obtained by quenching the reaction in liquid N2, detects C2 species such as acetyl (‐COCH3) bonding with an oxygen, ethyl (‐CH2CH3) bonding with a Zn site, and epoxyethane molecules adsorbing on a Zn site and a Brønsted acid site of the catalyst, respectively. These species could provide insight into C?C bond formation during ethane formation. Interestingly, this selective reaction pathway toward ethane appears to be general because a series of other Zn2+‐ion exchanged aluminosilicate zeolites with different topologies (for example, SSZ‐13, MCM‐22, and ZSM‐12) all give ethane predominantly. By contrast, a physical mixture of ZnO‐ZSM‐5 favors formation of hydrocarbons beyond C3+. These results provide an important guide for tuning the product selectivity in syngas conversion. 相似文献
In the mixed‐ligand metal–organic polymeric compound poly[[μ2‐1,4‐bis(imidazol‐1‐yl)benzene](μ2‐terephthalato)dizinc(II)], [Zn2(C8H4O4)2(C12H10N4)]n or [Zn2(bdc)2(bib)]n [H2bdc is terephthalic acid and bib is 1,4‐bis(imidazol‐1‐yl)benzene], the asymmetric unit contains one ZnII ion, with two half bdc anions and one half bib molecule lying around inversion centers. The ZnII ion is in a slightly distorted tetrahedral environment, coordinated by three carboxylate O atoms from three different bdc anions and by one bib N atom. The crystal structure is constructed from the secondary building unit (SBU) [Zn2(CO2)2N2O2], in which the two metal centers are held together by two bdc linkers with bis(syn,syn‐bridging bidentate) bonding modes. The SBU is connected by bdc bridges to form a two‐dimensional grid‐like (4,4)‐layer, which is further pillared by the bib ligand. Topologically, the dinuclear SBU can be considered to be a six‐connected node, and the extended structure exhibits an elongated primitive approximately cubic framework. The three‐dimensional framework possesses a large cavity with dimensions of approximately 10 × 13 × 17 Å in cross‐section. The potential porosity is filled with mutual interpenetration of two identical equivalent frameworks, generating a novel threefold interpenetrating network with an α‐polonium topology [Abrahams, Hoskins, Robson & Slizys (2002). CrystEngComm, 4 , 478–482]. 相似文献
Finely tuned: Carbon nanotubes are exposed to a CF4 radio‐frequency plasma (see picture). High‐resolution photoelectron spectroscopy shows that the treatment effectively grafts fluorine atoms onto the MWCNTs, altering the valence electronic states. Fluorine surface concentration can be tuned by varying the exposure time.
In the crystal structure of [(n-C4H9)4N]+·[NH2(C2N2S)NHCOO?]·NH2CSNC(NH2)2 (1), guanylthiourea molecules and 1,3,5-thiadiazole-5-amido-2-carbamate ions are joined together by intermolecular N–H…O, N–H…N, and weak N–H…S hydrogen bonds to generate stacked host layers corresponding to the (110) family of planes, between which the tetra-n-butylammonium guest cations are orderly arranged in a sandwich-like manner. In the crystal structure of [(n-C3H7)4N]+·[NH2(C2N2S)NHCOO?]·NH2CSNC(NH2)2·H2O (2), the tetrapropyl ammonium cations are stacked within channels each composed of hydrogen bonded ribbons of guanylthiourea molecules, 1,3,5-thiadiazole-5-amido-2-carbamate ions and water molecules. 相似文献