首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163981篇
  免费   17591篇
  国内免费   9411篇
化学   83649篇
晶体学   1631篇
力学   12279篇
综合类   513篇
数学   41222篇
物理学   51689篇
  2024年   708篇
  2023年   2129篇
  2022年   3375篇
  2021年   3593篇
  2020年   4040篇
  2019年   3537篇
  2018年   12895篇
  2017年   12412篇
  2016年   10183篇
  2015年   5162篇
  2014年   5621篇
  2013年   7055篇
  2012年   11779篇
  2011年   18302篇
  2010年   10849篇
  2009年   11042篇
  2008年   11991篇
  2007年   13439篇
  2006年   4958篇
  2005年   5072篇
  2004年   4416篇
  2003年   4183篇
  2002年   3066篇
  2001年   2049篇
  2000年   1889篇
  1999年   1989篇
  1998年   1786篇
  1997年   1718篇
  1996年   1760篇
  1995年   1436篇
  1994年   1224篇
  1993年   1089篇
  1992年   910篇
  1991年   846篇
  1990年   697篇
  1989年   569篇
  1988年   437篇
  1987年   369篇
  1986年   393篇
  1985年   313篇
  1984年   197篇
  1983年   160篇
  1982年   147篇
  1981年   98篇
  1980年   88篇
  1979年   59篇
  1914年   45篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
The selective transition-metal catalyzed C−F bond functionalization of inexpensive industrial fluorochemicals represents one of the most attractive approaches to valuable fluorinated compounds. However, the selective C(sp2)−F bond carbofunctionalization of refrigerant hydrofluoroolefins (HFOs) remains challenging. Here, we report a nickel-catalyzed selective C(sp2)−F bond alkylation of HFO-1234yf with alkylzinc reagents. The resulting 2-trifluoromethylalkenes can serve as a versatile synthon for diversified transformations, including the anti-Markovnikov type hydroalkylation and the synthesis of bioactive molecule analogues. Mechanistic studies reveal that lithium salt is essential to promote the oxidative addition of Ni0(Ln) to the C−F bond; the less electron-rich N-based ligands, such as bipyridine and pyridine-oxazoline, feature comparable or even higher oxidative addition rates than the electron-rich phosphine ligands; the strong σ-donating phosphine ligands, such as PMe3, are detrimental to transmetallation, but the less electron-rich and bulky N-based ligands, such as pyridine-oxazoline, facilitate transmetallation and reductive elimination to form the final product.  相似文献   
52.
Structurally defined graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices. Low band gap (<1 eV) GNRs are particularly important when considering the Schottky barrier in device performance. Here, we demonstrate the first solution synthesis of 8-AGNRs through a carefully designed arylated polynaphthalene precursor. The efficiency of the oxidative cyclodehydrogenation of the tailor-made polymer precursor into 8-AGNRs was validated by FT-IR, Raman, and UV/Vis-near-infrared (NIR) absorption spectroscopy, and further supported by the synthesis of naphtho[1,2,3,4-ghi]perylene derivatives ( 1 and 2 ) as subunits of 8-AGNR , with a width of 0.86 nm as suggested by the X-ray single crystal analysis. Low-temperature scanning tunneling microscopy (STM) and solid-state NMR analyses provided further structural support for 8-AGNR . The resulting 8-AGNR exhibited a remarkable NIR absorption extending up to ∼2400 nm, corresponding to an optical band gap as low as ∼0.52 eV. Moreover, optical-pump TeraHertz-probe spectroscopy revealed charge-carrier mobility in the dc limit of ∼270 cm2 V−1 s−1 for the 8-AGNR .  相似文献   
53.
Covalent adaptable networks (CANs) possess unique properties as a result of their internal dynamic bonds, such as self-healing and reprocessing abilities. In this study, we report a thermally responsive C−Se dynamic covalent chemistry (DCC) that relies on the transalkylation exchange between selenonium salts and selenides, which undergo a fast transalkylation reaction in the absence of any catalyst. Additionally, we demonstrate the presence of a dissociative mechanism in the absence of selenide groups. After incorporation of this DCC into selenide-containing polymer materials, it was observed that the cross-linked networks display varying dynamic exchange rates when using different alkylation reagents, suggesting that the reprocessing capacity of selenide-containing materials can be regulated. Also, by incorporating selenonium salts into polymer materials, we observed that the materials exhibited good healing ability at elevated temperatures as well as excellent solvent resistance at ambient temperature. This novel dynamic covalent chemistry thus provides a straightforward method for the healing and reprocessing of selenide-containing materials.  相似文献   
54.
The development of PtIV prodrugs that are reduced into the therapeutically active PtII species within the tumor microenvironment has received much research interest. In order to provide spatial and temporal control over the treatment, there is a high demand for the development of compounds that could be selectively activated upon irradiation. Despite recent progress, the majority of PtIV complexes are excited with ultraviolet or blue light, limiting the use of such compounds to superficial application. To overcome this limitation, herein, the first example of PtIV prodrug nanoparticles that could be reduced with deeply penetrating ultrasound radiation is reported, enabling the treatment of deep-seated or large tumors. The nanoparticles were found to selectively accumulate inside a mouse colon carcinoma tumor upon intravenous injection and were able to eradicate the tumor upon exposure to ultrasound radiation.  相似文献   
55.
The development of chiral optical active materials with switchable circularly polarized luminescence (CPL) signals remains a challenge. Here an azoarene-based circularly polarized luminescence molecular switch, (S, R, S)-switch 1 and (R, R, R)-switch 2 , are designed and prepared with an (R)-binaphthyl azo group as a chiral photosensitive moiety and two (S)- or (R)-binaphthyl fluorescent molecules with opposite or the same handedness as chiral fluorescent moieties. Both switches exhibit reversible trans/cis isomerization when irradiated by 365 nm UV light and 520 nm green light in solvent and liquid crystal (LC) media. In contrast with the control (R, R, R)-switch 2 , when switch 1 is doped into nematic LCs, polarization inversion and switching-off of the CPL signals are achieved in the resultant helical superstructure upon irradiation with 365 nm UV and 520 nm green light, respectively. Meanwhile, the fluorescence intensity of the system is basically unchanged during this switching process. In particular, these variations of the CPL signals could be recovered after heating, realizing the true sense of CPL reversible switching. Taking advantage of the unique CPL switching, the proof-of-concept for “a dual-optical information encryption system” based on the above CPL active material is demonstrated.  相似文献   
56.
Bisborylalkanes play important roles in organic synthesis as versatile bifunctional reagents. The two boron moieties in these compounds can be selectively converted into other functional groups through cross-coupling, oxidation or radical reactions. Thus, the development of efficient methods for synthesizing bisborylalkanes is highly demanded. Herein we report a new strategy to access bisborylalkanes through the reaction of N-trisylhydrazones with diboronate, in which the bis(boryl) methane is transformed into 1,2-bis(boronates) via formal carbene insertion. Since the N-trisylhydrazones can be readily derived from the corresponding aldehydes, this strategy represents a practical synthesis of 1,2-diboronates with broad substrate scope. Mechanistic studies reveal an unusual neighboring group effect of 1,1-bis(boronates), which accounts for the observed regioselectivity when unsymmetric 1,1-diboronates are applied.  相似文献   
57.
Herein, we report a palladium/norbornene/copper co-catalyzed single-step approach that merges selective ortho C−H bond esterification with ipso thiolation for construction of synthetically versatile 2-arylthio aryl esters under exceptionally mild conditions. Importantly, this process proceeded in a highly efficient manner, allowing alkoxycarbonyl and thio groups to be installed into one aryl iodides simultaneously by harnessing thiocarbonate as bifunctional reagent. The method has been demonstrated to accommodate good functionalities and features broad substrate scope.  相似文献   
58.
We report herein the first nonheme CuFe oxygen reduction catalyst ([CuII(bpbp)(μ-OAc)2FeIII]2+, CuFe−OAc ), which serves as a functional model of cytochrome c oxidase and can catalyze oxygen reduction to water with a turnover frequency of 2.4×103 s−1 and selectivity of 96.0 % in the presence of Et3NH+. This performance significantly outcompetes its homobimetallic analogues (2.7 s−1 of CuCu−OAc with %H2O2 selectivity of 98.9 %, and inactive of FeFe−OAc ) under the same conditions. Structure-activity relationship studies, in combination with density functional theory calculation, show that the CuFe center efficiently mediates O−O bond cleavage via a CuII(μ-η1 : η2-O2)FeIII peroxo intermediate in which the peroxo ligand possesses distinctive coordinating and electronic character. Our work sheds light on the nature of Cu/Fe heterobimetallic cooperation in oxygen reduction catalysis and demonstrates the potential of this synergistic effect in the design of nonheme oxygen reduction catalysts.  相似文献   
59.
Fluorinated amino acids and related peptides/proteins have been found widespread applications in pharmaceutical and agricultural compounds. However, strategies for introducing a C−F bond into amino acids in an enantioselective manner are still limited and no such asymmetric catalysis strategy has been reported. Herein, we have successfully developed a Pd/Cu/Li ternary system for stereodivergent synthesis of chiral fluorinated amino acids. This method involves a sequential desymmetrization of geminal difluoromethylenes and allylic substitution with amino acid Schiff bases via Pd/Li and Pd/Cu dual activation, respectively. A series of non-natural amino acids bearing a chiral allylic/benzylic fluorine motif are easily synthesized in high yields with excellent regio-, diastereo-, and enantioselectivities (up to >20 : 1 dr and >99 % ee). A density functional theory (DFT) study revealed the F−Cu interaction of the allylic substrate and the Cu catalyst significantly influence the stereoselectivity.  相似文献   
60.
Stable carbon-based polyradicals exhibiting strong spin-spin coupling and slow depolarization processes are particularly attractive functional materials. A new molecular motif synthesized by a convenient method that allows the integration of stable, high-spin radicals to (hetero)aromatic polycycles has been developed, as illustrated by a non-Kekulé diradical showing a triplet ground state with long persistency (τ1/2≈31 h) in air. Compared to the widely used 1,3-phenylene, the newly designed (diaza)pyrene-4,10-diyl moiety is for the first time demonstrated to confer ferromagnetic (FM) spin coupling, allowing delocalized non-disjoint SOMOs. With the X-ray crystallography unambiguously proving the diradical structure, the triplet ground state was thoroughly characterized. A large ΔES-T of 1.1 kcal/mol, proving the strong FM coupling effect, was revealed consistently by superconducting quantum interference device (SQUID) measurements and variable-temperature electron paramagnetic resonance (EPR) spectroscopy, while the zero-field splitting and triplet nutation characters were examined by continuous-wave and pulsed EPR spectroscopy. A millisecond spin-lattice relaxation time was also detected. The current study not only offers a new molecular motif enabling FM coupling between carbon-based spins, but more importantly presents a general method for installing stable polyradicals into functional π-systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号