首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163986篇
  免费   17604篇
  国内免费   9422篇
化学   83652篇
晶体学   1631篇
力学   12295篇
综合类   513篇
数学   41228篇
物理学   51693篇
  2024年   711篇
  2023年   2129篇
  2022年   3375篇
  2021年   3606篇
  2020年   4047篇
  2019年   3537篇
  2018年   12895篇
  2017年   12412篇
  2016年   10183篇
  2015年   5162篇
  2014年   5621篇
  2013年   7055篇
  2012年   11779篇
  2011年   18302篇
  2010年   10849篇
  2009年   11042篇
  2008年   11991篇
  2007年   13439篇
  2006年   4958篇
  2005年   5072篇
  2004年   4416篇
  2003年   4183篇
  2002年   3066篇
  2001年   2049篇
  2000年   1889篇
  1999年   1989篇
  1998年   1786篇
  1997年   1718篇
  1996年   1760篇
  1995年   1436篇
  1994年   1224篇
  1993年   1089篇
  1992年   910篇
  1991年   846篇
  1990年   697篇
  1989年   569篇
  1988年   437篇
  1987年   369篇
  1986年   393篇
  1985年   313篇
  1984年   197篇
  1983年   160篇
  1982年   147篇
  1981年   98篇
  1980年   88篇
  1979年   59篇
  1914年   45篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Low-dimensional (low-D) organic metal halide hybrids (OMHHs) have emerged as fascinating candidates for optoelectronics due to their integrated properties from both organic and inorganic components. However, for most of low-D OMHHs, especially the zero-D (0D) compounds, the inferior electronic coupling between organic ligands and inorganic metal halides prevents efficient charge transfer at the hybrid interfaces and thus limits their further tunability of optical and electronic properties. Here, using pressure to regulate the interfacial interactions, efficient charge transfer from organic ligands to metal halides is achieved, which leads to a near-unity photoluminescence quantum yield (PLQY) at around 6.0 GPa in a 0D OMHH, [(C6H5)4P]2SbCl5. In situ experimental characterizations and theoretical simulations reveal that the pressure-induced electronic coupling between the lone-pair electrons of Sb3+ and the π electrons of benzene ring (lp-π interaction) serves as an unexpected “bridge” for the charge transfer. Our work opens a versatile strategy for the new materials design by manipulating the lp-π interactions in organic–inorganic hybrid systems.  相似文献   
42.
Clusters combine the advantages of organic molecules and inorganic nanomaterials, which are promising alternatives for optoelectronic applications. Nonetheless, recently emerged cluster light-emitting diodes require further excited state optimization of cluster emitters, especially to reduce population of the cluster-centered triplet quenching state (3CC). Here we report that redox-active ligands enhance reverse intersystem crossing (RISC) of Cu4I4 cluster for triplet-to-singlet conversion, and thermally activated delayed fluorescence (TADF) host can provide an external RISC channel. It indicates that the complementarity between TADF host and cluster in RISC transitions gives rise to 100 % triplet conversion efficiency and complete singlet exciton convergence, rendering 100-fold increased singlet radiation rate constant and tenfold decreased triplet non-radiation rate constant. We achieve a photoluminescence quantum yield of 99 % and a record external quantum efficiency of 29.4 %.  相似文献   
43.
Herein, we described the first synthesis of the pentasaccharide and decasaccharide of the A. baumannii ATCC 17961 O-antigen for developing a synthetic carbohydrate-based vaccine against A. baumannii infection. The efficient synthesis of the rare sugar 2,3-diacetamido-glucuronate was achieved using our recently introduced organocatalytic glycosylation method. We found, for the first time, that long-range levulinoyl group participation via a hydrogen bond can result in a significantly improved β-selectivity in glycosylations. This solves the stereoselectivity problem of highly branched galactose acceptors. The proposed mechanism was supported by control experiments and DFT computations. Benefiting from the long-range levulinoyl group participation strategy, the pentasaccharide donor and acceptor were obtained via an efficient [2+1+2] one-pot glycosylation method and were used for the target decasaccharide synthesis.  相似文献   
44.
Ether solvents with superior reductive stability promise excellent interphasial stability with high-capacity anodes while the limited oxidative resistance hinders their high-voltage operation. Extending the intrinsic electrochemical stability of ether-based electrolytes to construct stable-cycling high-energy-density lithium-ion batteries is challenging but rewarding. Herein, the anion-solvent interactions were concerned as the key point to optimize the anodic stability of the ether-based electrolytes and an optimized interphase was realized on both pure-SiOx anodes and LiNi0.8Mn0.1Co0.1O2 cathodes. Specifically, the small-anion-size LiNO3 and tetrahydrofuran with high dipole moment to dielectric constant ratio realized strengthened anion-solvent interactions, which enhance the oxidative stability of the electrolyte. The designed ether-based electrolyte enabled a stable cycling performance over 500 cycles in pure-SiOx||LiNi0.8Mn0.1Co0.1O2 full cell, demonstrating its superior practical prospects. This work provides new insight into the design of new electrolytes for emerging high-energy density lithium-ion batteries through the regulation of interactions between species in electrolytes.  相似文献   
45.
Solid-electrolyte interphase (SEI) seriously affects battery's cycling life, especially for high-capacity anode due to excessive electrolyte decomposition from particle fracture. Herein, we report an ultrathin SEI (3–4 nm) induced by Cu+-tailored double electrical layer (EDL) to suppress electrolyte consumption and enhance cycling stability of CuS anode in sodium-ion batteries. Unique EDL with SO3CF3-Cu complex absorbing on CuS in NaSO3CF3/diglyme electrolyte is demonstrated by in situ surface-enhanced Raman, Cyro-TEM and theoretical calculation, in which SO3CF3-Cu could be reduced to CuF2-rich SEI. Dispersed CuF2 and F-containing compound can provide good interfacial contact for formation of ultrathin and stable SEI film to minimize electrolyte consumption and reduce activation energy of Na+ transport. As a result, the modified CuS delivers high capacity of 402.8 mAh g−1 after 7000 cycles without capacity decay. The insights of SEI construction pave a way for high-stability electrode.  相似文献   
46.
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a widely used hole transporting layer (HTL) in organic solar cells (OSCs), but its acidity severely reduces the stability of devices. Until now, very few HTLs were developed to replace PEDOT:PSS toward stable and high-performance OSCs. Herein, a new cobalt-lanthanum (Co-La) inorganic system was reported as HTL to show a high conversion efficiency (PCE) of 18.82 %, which is among the top PCEs in binary OSCs. Since electron-rich outer shell of La atom can interact with Co atom to form charge transfer complex, the work function and conductivity of the Co-La system could be simultaneously enhanced compared to Co or La-based HTLs. This Co-La system could also be applied into other OSCs to show high performance. All these results demonstrate that binary Co-La systems as HTL can efficiently tackle the issue in hole transporting and show powerful application in OSCs to replace PEDOT:PSS.  相似文献   
47.
Functional materials with multi-responsive properties and good controllability are highly desired for developing bioinspired and intelligent multifunctional systems. Although some chromic molecules have been developed, it is still challenging to realize in situ multicolor fluorescence changes based on a single luminogen. Herein, we reported an aggregation-induced emission (AIE) luminogen called CPVCM, which can undergo a specific amination with primary amines to trigger luminescence change and photoarrangement under UV irradiation at the same active site. Detailed mechanistic insights were carried out to illustrate the reactivity and reaction pathways. Accordingly, multiple-colored images, a quick response code with dynamic colors, and an all-round information encryption system were demonstrated to show the properties of multiple controls and responses. It is believed that this work not only provides a strategy to develop multiresponsive luminogens but also develops an information encryption system based on luminescent materials.  相似文献   
48.
Lipopolysaccharides from Bacteroides vulgatus represent interesting targets for the treatment of inflammatory bowel diseases. However, efficient access to long, branched and complex lipopolysaccharides remains challenging. Herein, we report the modular synthesis of a tridecasaccharide from Bacteroides vulgates through an orthogonal one-pot glycosylation strategy based on glycosyl ortho-(1-phenylvinyl)benzoates, which avoids the issues of thioglycoside-based one-pot synthesis. Our approach also features: 1) 5,7-O-di-tert-butylsilylene-directed glycosylation for stereoselective construction of the α-Kdo linkage; 2) hydrogen-bond-mediated aglycone delivery for the stereoselective formation of β-mannosidic bonds; 3) remote anchimeric assistance for stereoselective assembly of the α-fucosyl linkage; 4) several orthogonal one-pot synthetic steps and strategic use of orthogonal protecting groups to streamline oligosaccharide assembly; 5) convergent [1+6+6] one-pot synthesis of the target.  相似文献   
49.
Herein, we report divergent additions of 2,2′-diazidobiphenyls to C60 and Sc3N@Ih-C80. In stark contrast to that of the previously reported bis-azide additions, the unexpected cascade reaction leads to the dearomative formation of azafulleroids 2 fused with a 7-6-5-membered ring system in the case of C60. In contrast, the corresponding reaction with Sc3N@Ih-C80 switches to the C−H insertion pathway, thereby resulting in multiple isomers, including a carbazole-derived [6,6]-azametallofulleroid 3 and a [5,6]-azametallofulleroid 4 and an unusual 1,2,3,6-tetrahydropyrrolo[3,2-c]carbazole-derived metallofullerene 5 , whose molecular structures have been unambiguously determined by single-crystal X-ray diffraction analyses. Among them, the addition type of 5 is observed for the first time in all reported additions of azides to fullerenes. Furthermore, unexpected isomerizations from 3 to 5 and from 4 to 5 have been discovered, providing the first examples of the isomerization of an azafulleroid to a carbazole-derived fullerene rather than an aziridinofullerene. In particular, the isomerism of the [5,6]-isomer 4 to the [5,6]-isomer 5 is unprecedented in fullerene chemistry, contradicting the present understanding that isomerization generally occurs between [5,6]- and [6,6]-isomers. Control experiments have been carried out to rationalize the reaction mechanism. Furthermore, representative azafulleroids have been applied in organic solar cells, thereby resulting in improved power conversion efficiencies.  相似文献   
50.
The development of blue-emissive ambipolar organic semiconductor is an arduous target due to the large energy gap, but is an indispensable part for electroluminescent device, especially for the transformative display technology of simple-structured organic light-emitting transistor (SS-OLET). Herein, we designed and synthesized two new dibenzothiophene sulfone-based high mobility blue-emissive organic semiconductors (DNaDBSOs), which demonstrate superior optical property with solid-state photoluminescent quantum yield of 46–67 % and typical ambipolar-transporting properties in SS-OLETs with symmetric gold electrodes. Comprehensive experimental and theoretical characterizations reveal the natural of ambipolar property for such blue-emissive DNaDBSOs-based materials is ascribed to a synergistic effect on lowering LUMO level and reduced electron injection barrier induced by the interfacial dipoles effect on gold electrodes due to the incorporation of appropriate DBSO unit. Finally, efficient electroluminescence properties with high-quality blue emission (CIE (0.179, 0.119)) and a narrow full-width at half-maximum of 48 nm are achieved for DNaDBSO-based SS-OLET, showing good spatial control of the recombination zone in conducting channel. This work provides a new avenue for designing ambipolar emissive organic semiconductors by incorporating the synergistic effect of energy level regulation and molecular-metal interaction, which would advance the development of superior optoelectronic materials and their high-density integrated optoelectronic devices and circuits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号