首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9210篇
  免费   1237篇
  国内免费   741篇
化学   6748篇
晶体学   124篇
力学   412篇
综合类   50篇
数学   838篇
物理学   3016篇
  2024年   27篇
  2023年   178篇
  2022年   265篇
  2021年   310篇
  2020年   355篇
  2019年   323篇
  2018年   252篇
  2017年   229篇
  2016年   439篇
  2015年   376篇
  2014年   455篇
  2013年   657篇
  2012年   838篇
  2011年   848篇
  2010年   507篇
  2009年   510篇
  2008年   592篇
  2007年   572篇
  2006年   489篇
  2005年   455篇
  2004年   300篇
  2003年   205篇
  2002年   224篇
  2001年   190篇
  2000年   181篇
  1999年   157篇
  1998年   145篇
  1997年   112篇
  1996年   108篇
  1995年   136篇
  1994年   119篇
  1993年   90篇
  1992年   79篇
  1991年   70篇
  1990年   67篇
  1989年   34篇
  1988年   45篇
  1987年   36篇
  1986年   35篇
  1985年   31篇
  1984年   23篇
  1983年   9篇
  1982年   20篇
  1981年   14篇
  1980年   7篇
  1979年   7篇
  1978年   10篇
  1977年   8篇
  1976年   7篇
  1975年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
Eu2+-, Mn2+- and Eu2+−Mn2+-doped CaMgSi2O6 phosphors have been prepared by a high-temperature solid-state reaction. Systematic investigation of the concentration- and temperature-dependent luminescence of Mn2+ showed that Mn2+ ions occupy two distinct sites in CaMgSi2O6. Electron–vibration interaction (EVI) analyses of Mn2+ ions revealed Huang–Rhys factors of 4.73 and 2.82 as well as effective phonon energies of 313 and 383 cm−1 for the two sites. Eu2+−Mn2+ energy transfer is also discussed, and its efficiency is estimated by lifetime and luminescence spectra. The different thermal quenching behaviours of Eu2+ and Mn2+, the distinct emission colours of Eu2+ (blue, band peak at ∼451 nm) and Mn2+ (yellow–red range, band peaks at ∼583 and 693 nm) endow the co-doped samples with potential applications in luminescence thermometry and temperature-/excitation wavelength-responsive dual anti-counterfeiting.  相似文献   
932.
From the implementation point of view, the printable magnetic Janus colloidal photonic crystals (CPCs) microspheres are highly desirable. Herein, we developed a dispensing-printing strategy for magnetic Janus CPCs display via a microfluidics-automatic printing system. Monodisperse core/shell colloidal particles and magnetic Fe3O4 nanoparticles precursor serve as inks. Based on the equilibrium of three-phase interfacial tensions, Janus structure is successfully formed, followed by UV irradiation and self-assembly of colloid particle to generate magnetic Janus CPCs microspheres. Notably, this method shows distinct superiority with highly uniform Janus CPCs structure, where the TMPTA/Fe3O4 hemisphere is in the bottom side while CPCs hemisphere is in the top side. Thus, by using Janus CPCs microspheres with two different structural colors as pixel points, a pattern with red flower and green leaf is achieved. Moreover, 1D linear Janus CPCs pattern encapsulated by hydrogel is also fabricated. Both the color and the shape can be changed under the traction of magnets, showing great potentials in flexible smart displays. We believe this work not only offers a new feasible pathway to construct magnetic Janus CPCs patterns by a dispensing-printable fashion, but also provides new opportunities for flexible and smart displays.  相似文献   
933.
Fan  Xuemei  Liu  Yandan  Fan  Xinhui  Nan  Yue  Su  Lingling  Wang  Shumin  Wang  Yimeng  Wang  Xiangting 《分析试验室》2022,(9):1029-1033
N and S co-doped graphene quantum dotsNS-GQDswith excellent fluorescence properties were synthesized by hydrothermal method using citrate and thiourea as ingredientsand were characterized. The fluorescence signal was notably reduced in the presence of single stranded DNAssDNAsince ssDNA can adsorb on the surface of NS-GQDs through p-p stacking interaction. Whereas a significantly restored fluorescence signal was observed in the presence of bleomycinowing to the irreversible cleavage of ssDNA by bleomycin with Fe2+ as cofactor. Thusa fluorescence sensor for bleomycin detection was developed. The linear range was from 1.8 to 1200 nmol/L and the detection limit was 0.25 nmol/L. The method was used to detect bleomycin content in human serum samples with satisfactory results. © 2022, Youke Publishing Co.,Ltd. All rights reserved.  相似文献   
934.
刘霞  匡春香  苏长会 《化学学报》2022,80(8):1135-1151
1,2,3-三氮唑化合物是一类具有重要生理活性的含氮杂环化合物, 其在医药、农药、材料科学等领域都具有广泛的应用. 不断开发基于三氮唑骨架的新型结构, 寻找新型高效的合成三氮唑衍生物的方法具有重要的意义和应用价值. 过渡金属催化的C—H键活化策略具有操作简便、效率高、三废少等优点, 是现代有机合成中高效构筑C—C键和C—X键的强大工具. 近年来, 过渡金属催化的三氮唑导向的C—H官能团化反应受到科学工作者的广泛关注, 该方法以不同结构的1,2,3-三氮唑作为导向基团, 在不同反应条件下通过直接活化C—H键来构建新的C—C键和C—X键, 高效合成复杂的三氮唑衍生物. 综述了近年来1,2,3-三氮唑导向下过渡金属催化的C—H键官能团化反应研究进展, 按照成键类型(碳-碳键、碳-杂键以及环化反应)对这些反应进行了梳理和总结, 并对今后该领域的发展进行了展望.  相似文献   
935.
Understanding the conformational ensembles of intrinsically disordered proteins and peptides (IDPs) in their various biological environments is essential for understanding their mechanisms and functional roles in the proteome, leading to a greater knowledge of, and potential treatments for, a broad range of diseases. To determine whether molecular simulation is able to generate accurate conformational ensembles of IDPs, we explore the structural landscape of the PLP peptide (an intrinsically disordered region of the proteolipid membrane protein) in aqueous and membrane-mimicking solvents, using replica exchange with solute scaling (REST2), and examine the ability of four force fields (ff14SB, ff14IDPSFF, CHARMM36 and CHARMM36m) to reproduce literature circular dichroism (CD) data. Results from variable temperature (VT) 1H and Rotating frame Overhauser Effect SpectroscopY (ROESY) nuclear magnetic resonance (NMR) experiments are also presented and are consistent with the structural observations obtained from the simulations and CD. We also apply the optimum simulation protocol to TP2 and ONEG (a cell-penetrating peptide (CPP) and a negative control peptide, respectively) to gain insight into the structural differences that may account for the observed difference in their membrane-penetrating abilities. Of the tested force fields, we find that CHARMM36 and CHARMM36m are best suited to the study of IDPs, and accurately predict a disordered to helical conformational transition of the PLP peptide accompanying the change from aqueous to membrane-mimicking solvents. We also identify an α-helical structure of TP2 in the membrane-mimicking solvents and provide a discussion of the mechanistic implications of this observation with reference to the previous literature on the peptide. From these results, we recommend the use of CHARMM36m with the REST2 protocol for the study of environment-specific IDP conformations. We believe that the simulation protocol will allow the study of a broad range of IDPs that undergo conformational transitions in different biological environments.

A protocol for simulating intrinsically disordered peptides in aqueous and hydrophobic solvents is proposed. Results from four force fields are compared with experiment. CHARMM36m performs the best for the simulated IDPs in all environments.  相似文献   
936.
937.
Ceria (CeO2) with phosphatase-like activity is widely recognized as one of the promising nanozymes. In general, shrinkage of the sizes of CeO2 can generate large active surface areas for dephosphorylation reactions. However, synthesizing CeO2 with an ultra-small structure while retaining its surface activity and avoiding its aggregation for use in non-redox biological applications has been a continuous challenge. Herein, a phosphatase-mimicking nanozyme CeO2 with ultra-small, excellent dispersibility, and accessibility, and largely exposed {111} facet was synthesized via a facile one-pot approach. In contrast to previous reports, which focus on enhancing the ·OH-induced cellular damage by peroxidase- or oxidase-like activity of CeO2, the present work demonstrates the phosphatase-like activity of CeO2 for boosting ferroptosis by disrupting cellular homeostasis. Cancer cells require high levels of nicotinamide adenine dinucleotide phosphate (NADP(H)) to enhance GSH synthesis and resist to ferroptosis. By virtue of the phosphatase-like activity, the obtained CeO2 could sustainably dephosphorylate NADP(H) and effectively inhibit the intracellular biosynthesis of GSH. Our results showed that using CeO2 as a phosphatase-mimicking nanozyme to deplete NADP(H) and its synthetic precursor glucose-6-phosphate (G6P) could attenuate the repair mechanisms under oxidative stress via indirectly inhibiting the supply of intracellular GSH and enhancing the occurrence of ferroptosis. The finding offers new insights into the regulation of ferroptosis by high-efficiency non-redox nanozymes, which could pave the way for the development of phosphatase-mimicking nanozymes.  相似文献   
938.
Candle soot (CS) is a desirable carbon nanomaterial for sensors owing to its highly porous nanostructure and large specific surface area. CS is advantageous in its low-cost and facile preparation compared to graphene and carbon nanotubes, but its pristine nanostructure is susceptible to collapse, hampering its application in electronic devices. This article reports conformal coating of nanoscale crosslinked hydrophilic polymer on CS film using initiated chemical vapor deposition, which well preserved the CS nanostructure and obtained nanoporous CS@polymer composites. Tuning coating thickness enabled composites with different morphologies and specific surface areas. Surprisingly, the humidity sensor made from composite with the lowest filling degree, thus largest specific surface area, showed relatively low sensitivity, which is likely due to its discontinuous structure, thus insufficient conductive channels. Composite sensor with optimum filling degree shows excellent sensing response of more than 103 with the linearity of R2 = 0.9400 within a broad relative humidity range from 11% to 96%. The composite sensor also exhibits outstanding sensing performance compared to literature with low hysteresis (3.00%), a satisfactory response time (28.69 s), and a fast recovery time (0.19 s). The composite sensor is fairly stable and durable even after 24 h soaking in water. Furthermore, embedding a humidity sensor into a face mask realizes real-time monitoring of human breath and cough, suggesting promising applications in respiratory monitoring.  相似文献   
939.
Developing oxygen evolution reaction (OER) electrocatalyst based on earth-abundant materials holds great promise for ascertaining water-splitting to surmount its deprived kinetics. In this regard, NiFe-LDH (layered double hydroxide) receives considerable attention owing to their layered structure. However, they still suffer from poor electronic conductivity and structural stability. We combined NiFe-LDH nanosheets with Magnéli phase Ti4O7 into a heterostructured composite. A series of analyses reveal that decorating Ti4O7 facilitates charge transfer to enhance the conductivity of NiFe-LDH-Ti4O7. During electrochemical measurement, Ni2+ is transformed to metastable Ni3+ (Ni (OH)→ NiOOH) before the OER onset potential. Thus, the presence of Ni3+ as the main active sites could improve the chemisorption of OH? to facilitate OER. As a result, the NiFe-LDH-Ti4O7 catalyst delivers as low as onset potential (1.43 V). Combining the holey structure (NiFe-LDH and Ti4O7) and the defect engineering generated on NiFe-LDH-Ti4O7 as a synergistic effect improves the OER performance. The inclusion of Ti4O7 in the composite leads to more vacancy sites, as evidenced by the extended X-ray absorption fine structure (EXAFS) analysis. The obtained defective structure with a low coordination environment would improve the electronic conductivity and facilitate the adsorption process of H2O onto metal cations, thereby increasing the intrinsic catalytic activity of NiOOH. The strong coupling of NiFe-LDH and Ti4O7 also increases the stability, and the heterostructured composite helps maintain the structural robustness of the LDH.  相似文献   
940.
The first principle computational screening was performed to investigate the effect of selected dopants for Li3PS4 sulfide solid electrolyte on its ionic conductivity and stability toward moisture. The results suggest that substitution P5+ using isovalent cations whose electronegativity (EN) value is closer to the value of S has more significant effects on the ionic conductivity, whereby W5+ and Sb5+ can improve most. Similarly, aliovalent cation substitutions with compensating changes in the lithium-ion concentration, particularly those with a lower oxidation state and higher EN, such as Cu2+, effectively enhance the lithium-ion conductivity in this structure. For cation dopants, it is found that ionic conductivity improvement of Li3PS4 is the synergetic effect of EN and oxidation number of the dopant as well as the material's lattice parameter change. Oxides of the considered cation dopants can also improve the ionic conductivity of the material but have much lower lithium-ion conductivity than the cases of cation dopants. However, the metal oxide dopants, particularly those derived from soft Lewis' acid cations, show a marginal improvement in moisture stability of the Li3PS4 electrolyte. The effect of halides and metal halide dopants on the lithium-ion conductivity and moisture stability of Li3PS4 electrolyte are also studied. It is found that metal halides are more effective than any other dopants in improving the ionic conductivity of Li3PS4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号