首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   4篇
化学   77篇
晶体学   1篇
力学   2篇
数学   12篇
物理学   26篇
  2024年   1篇
  2023年   3篇
  2022年   8篇
  2021年   11篇
  2020年   4篇
  2019年   8篇
  2018年   1篇
  2017年   6篇
  2016年   6篇
  2015年   3篇
  2014年   2篇
  2013年   7篇
  2012年   10篇
  2011年   12篇
  2010年   6篇
  2009年   6篇
  2008年   2篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  1992年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有118条查询结果,搜索用时 367 毫秒
31.
32.
A novel on-axis one-element polarization-independent light in- and out-coupling mechanism for surface plasmon resonance (SPR) is proposed. The system utilizes an integrated high-NA concentric chirped grating to both focus the incident light on the metallic film and collimate the reflected beam onto a CCD array to extract the SPR signal. With NA up to 1.47, a broad sensing dynamic range from n=1 to 1.35 can be achieved. An analytical model is implemented to demonstrate the dependency of the radial location of the resonances on the detecting substance and its sensitivity to the change of the refractive index. The model shows a trend similar to rigorous ray-tracing calculations.  相似文献   
33.
The detection and qualitative characterization of outdoor ambient bioaerosols have a relatively greater sense of urgency in recent times.Mass-based pyrolysis-gas chromatography-ion mobility spectrometry (Py-GC-IMS) and particle-based UV-vis fluorescence technologies were spatially situated for spore and protein bioaerosol detection in a Southeastern prairie region in Alberta, Canada. Orthogonal systems analyses versus individual detector results were investigated for the temporal characterization of bioaerosols. The systems responded to low agent analyte-containing particles per liter of air (PLA) concentrations, and were verified by reference samplers. An orthogonal technologies sensor system appears to be attractive for a high confidence detection of presence and temporal characterization of bioaerosols.  相似文献   
34.
Monitoring food quality and safety need the development of highly sensitive and accurate techniques. Organochlorine pesticides (OCPs) are a widely used category of pesticides. The high toxicity and high stability of OCPs pesticides made their detection the target of several research studies. Chloridazon, one of the wide used OCPs pesticides, and its major degradation product (chloridazon-desphenyl) have shown high harmful effects. Here, a specific OCPs electrochemical sensor was developed. Fe3O4 nanostructures decorated indium tin oxide (ITO) electrode showed high specificity towards the OCPs because of the capability of chlorine atoms, to interact with the iron oxide NPs. The chemical composition and the morphology of the modified nanosensor were investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), energy dispersive x-ray (EDX), and Raman spectroscopy techniques. The results showed the formation of two morphologies, including spongy agglomerated NPs with100 nm in diameter and nanofibers with 20 nm in thickness. The modified electrode exhibited a high sensitivity with a detection limit of 0.9 μmol L−1. Also, chloridazon was detected in the presence of various interferences, including isoproturon pesticide and urea. Furthermore, chloridazon pesticide was also detected in a surface water sample.  相似文献   
35.
Chlorogenic acids are among the most abundant phenolics found in the human diet. Of these, the mono-caffeoylquinic acids are the predominant phenolics found in fruits, such as apples and pears, and products derived from them. In this research, a comprehensive study of the electrospray ionization (ESI) tandem mass spectrometric (MS/MS) dissociation behavior of the three most common mono-caffeoylquinic acids, namely 5-O-caffeoylquinic acid (5-CQA), 3-O-caffeoylquinic acid (3-CQA) and 4-O-caffeoylquinic acid (4-CQA), were determined using both positive and negative ionization. All proposed structures of the observed product ions were confirmed with second-generation MS3 experiments. Similarities and differences between the dissociation pathways in the positive and negative ion modes are discussed, confirming the proposed structures and the established MS/MS fingerprints. MS/MS dissociation was primarily driven via the cleavage of the ester bond linking the quinic acid moiety to the caffeic acid moiety within tested molecules. Despite being structural isomers with the same m/z values and dissociation behaviors, the MS/MS data in the negative ion mode was able to differentiate the three isomers based on ion intensity for the major product ions, observed at m/z 191, 179 and 173. This differentiation was consistent among various MS instruments. In addition, ESI coupled with high-field asymmetric waveform ion mobility spectrometry-mass spectrometry (ESI-FAIMS-MS) was employed for the separation of these compounds for the first time. By combining MS/MS data and differential ion mobility, a method for the separation and identification of mono-caffeoylquinic in apple/pear juice samples was developed with a run time of less than 1 min. It is envisaged that this methodology could be used to identify pure juices based on their chlorogenic acid profile (i.e., metabolomics), and could also be used to detect juice-to-juice adulteration (e.g., apple juice addition to pear juice).  相似文献   
36.
Nigella sativa (N. sativa) seed has been used as an important nutritional flavoring agent and in traditional medicine for treating many illnesses since ancient times. Understanding the proteomic component of the seed may lead to enhance the understanding of its structural and biological functional complexity. In this study, we have analyzed its proteome profile based on gel-based proteome mapping technique that includes one-dimensional gel electrophoresis followed by liquid chromatography and tandem mass spectrometry strategy. We have not come across any such studies that have been performed in N. sativa seeds up to date. A total of 277 proteins were identified, and their functional, metabolic, and location-wise annotations were carried out using the UniProt database. The majority of proteins identified in the proteome dataset based on their function were those involved in enzyme catalytic activity, nucleotide binding, and protein binding while the major cellular processes included regulation of biological process followed by regulation of secondary biological process, cell organization and biogenesis, protein metabolism, and transport. The identified proteome was localized mainly to the nucleus then to the cytoplasm, plasma membrane, mitochondria, plastid, and others. A majority of the proteins were involved in biochemical pathways involving carbohydrate metabolism, amino acid and shikimate pathway, lipid metabolism, nucleotide, cell organization and biogenesis, transport, and defense processes. The identified proteins in the dataset help to improve our understanding of the pathways involved in N. sativa seed metabolism and its biochemical features and detail out useful information that may help to utilize these proteins. This study could thus pave a way for future further high-throughput studies using a more targeted proteomic approach.  相似文献   
37.
The current approach described the synthesis of a new series of indolylpyrrole derivatives through multicomponent reaction of α-cyano chalcones, appropriate aldehydes, and ammonium acetate in refluxed acetic acid. The chemical structures of the designed compounds were confirmed with spectroscopic data and elemental analysis and then tested for their in vitro cytotoxic activity by SRB assay method towards three cell lines involving human Prostate adenocarcinoma; metastatic cells (PC-3), human ovary adenocarcinoma (SKOV3) and human dukes' type B, colorectal adenocarcinoma (LS 174 T). Most significant activity provided with compounds 5c, 5h and, 5j against prostate cancer cells (PC-3) with IC50s of 3.30 ± 0.20, 3.60 ± 0.10, and 3.60 ± 0.90 µg/ml, respectively. In human ovarian carcinoma (SKOV3), the compounds 5a, and 5i have stronger cytotoxicity with IC50s of 1.20 ± 0.04, 1.90 ± 0.50 µg/ml, respectively than the standard doxorubicin (IC50 = 2.20 ± 0.02 µg/ml). On the other hand, only compound 5a has the ability to diminish the viability of LS174T cells in an active manner with IC50 2.80 ± 0.10 µg/ml. Consequently, this effort offers groundwork for additional examination of nominated indolylpyrroles as antiproliferative agents.  相似文献   
38.
Colorectal cancer (CRC) remains one of the main causes of death worldwide and in Saudi Arabia. The toxicity and the development of resistance against 5 fluorouracil 5FU pose increasing therapeutic difficulties, which necessitates the development of personalized drugs and drug combinations. Objectives: First, to determine the most important kinases and kinase pathways, and the amount of ABC transporters and KRAS in samples taken from Saudi CRC patients. Second, to investigate the chemosensitizing effect of LY294002 and HAA2020 and their combinations with 5FU on HT29, HT29-5FU, HCT116, and HCT116-5FU CRC cells, their effect on the three ABC transporters, cell cycle, and apoptosis, in light of the important kinase pathways resulting from the first part of this study. Methods: The PamChip® peptide micro-array profiling was used to determine the level of kinase and targets in the Saudi CRC samples. Next, RT-PCR, MTT cytotoxicity, Western blotting, perturbation of cell cycle, annexin V, and immunofluorescence assays were used to investigate the effect on CRC, MRC5, and HUVEC cells. Results: The kinase activity profiling highlighted the importance of the PI3K/AKT, MAPK, and the growth factors pathways in the Saudi CRC samples. PIK3CA was the most overexpressed, and it was associated with increased level of mutated KRAS and the three ABC transporters, especially ABCC1 in the Saudi samples. Next, combining HAA2020 with 5FU exhibited the best synergistic and resistance-reversal effect in the four CRC cells, and the highest selectivity indices compared to MRC5 and HUVEC normal cells. Additionally, HAA2020 with 5FU exerted significant inhibition of ABCC1 in the four CRC cells, and inhibition of PIK3CA/AKT/MAPK7/ERK in HT29 and HT29-5FU cells. The combination also inhibited EGFR, increased the preG1/S cell cycle phases, apoptosis, and caspase 8 in HT29 cells, while it increased the G1 phase, p21/p27, and apoptosis in HT29-5FU cells. Conclusion: We have combined the PamChip kinase profiling of Saudi CRC samples with in vitro drug combination studies in four CRC cells, highlighting the importance of targeting PIK3CA and ABCC1 for Saudi CRC patients, especially given that the overexpression of PIK3CA mutations was previously linked with the lack of activity for the anti-EGFRs as first line treatment for CRC patients. The combination of HAA2020 and 5FU has selectively sensitized the four CRC cells to 5FU and could be further studied.  相似文献   
39.
The 5G technology is a promising technology to cope with the increasing demand for higher data rate and quality of service. In this paper, two proposed techniques are implemented for multiple input multiple output (MIMO) self-heterodyne OFDM system to enhance data rate and minimize the bit error rate (BER). In both of the two proposed techniques, Band Selection (BS) approach is used, once with Space Time Block Coded (STBC) for the first proposed technique (BS- STBC), and once again with Frequency Space Time Block Coded (FSTBC) for the second proposed technique (BS-FSTBC). The use of the BS in the proposed techniques helps to choose the sub-band with better subchannels gains for sending the information and consequently, minimize the BER. Moreover, the use of the FSTBC instead of STBC helps to use the spectral efficiently and hence increase data rate. The simulation results show that the proposed techniques BS-STBC and BS-FSTBC, for the MIMO self-heterodyne OFDM system, provide a great enhancement in the BER performance when compared to the conventional techniques. Moreover, the simulation results show that the first proposed technique BS-FSTBC outperform the second propose technique BS-STBC in term of the BER performance.  相似文献   
40.
In this note, we consider the question of when a Toeplitz operator on the Hardy–Hilbert space \(H^2\) of the open unit disk \(\mathbb {D}\) is complex symmetric, focusing on symbols \(\phi :\mathbb {T}\rightarrow \mathbb {C}\) that are continuous on the unit circle \(\mathbb {T}=\partial \mathbb {D}\). A closed curve \(\phi \) is called nowhere winding if the winding number of \(\phi \) is 0 about every point not in the range of \(\phi \). It is then shown that if \(T_\phi \) is complex symmetric, then \(\phi \) must be nowhere winding. Hence if \(\phi \) is a simple closed curve, then \(T_\phi \) cannot be a complex symmetric operator. The spectrum and invertibility of complex symmetric Toeplitz operators with continuous symbols are then described. Finally, given any continuous curve \(\gamma :[a,b]\rightarrow \mathbb {C}\), it is shown that there exists a complex symmetric Toeplitz operator with continuous symbol whose spectrum is precisely the range of \(\gamma \).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号