首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   2篇
化学   48篇
数学   2篇
物理学   13篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
  2008年   6篇
  2007年   1篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   5篇
  1999年   1篇
  1994年   2篇
  1993年   2篇
  1989年   2篇
  1987年   1篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
  1972年   2篇
  1971年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
41.
New materials that can bind and deliver oligonucleotides such as short interfering RNA (siRNA) without toxicity are greatly needed to fulfill the promise of therapeutic gene silencing. Amphiphilic macromolecules (AMs) were functionalized with linear ethyleneimines to create cationic AMs capable of complexing with siRNA. Structurally, the parent AM is formed from a mucic acid backbone whose tetra-hydroxy groups are alkylated with 12-carbon aliphatic chains to form the hydrophobic component of the macromolecule. This alkylated mucic acid is then mono-functionalized with poly(ethylene glycol) (PEG) as a hydrophilic component. The resulting AM contains a free carboxylic acid within the hydrophobic domain. In this work, linear ethyleneimines were conjugated to the free carboxylic acid to produce an AM with one primary amine (1N) or one primary amine and four secondary amines (5N). Further, an AM with amine substitution both to the free carboxylic acid in the hydrophobic domain and also to the adjacent PEG was synthesized to produce a polymer with one primary amine and eight secondary amines (9N), four located on each side of the AM hydrophobic domain. All amine-functionalized AMs formed nanoscale micelles but only the 5N and 9N AMs had cationic zeta potentials, which increased with increasing number of amines. All AMs exhibited less inherent cytotoxicity than linear polyethyleneimine (L-PEI) at concentrations of 10 μM and above. By increasing the length of the cationic ethyleneimine chain and the total number of amines, successful siRNA complexation and cellular siRNA delivery was achieved in a malignant glioma cell line. In addition, siRNA-induced silencing of firefly luciferase was observed using complexes of siRNA with the 9N AM and comparable to L-PEI, yet showed better cell viability at higher concentrations (above 10 μM). This work highlights the promise of cationic AMs as safe and efficient synthetic vectors for siRNA delivery. Specifically, a novel polymer (9N) was identified for efficient siRNA delivery to cancer cells and will be further evaluated.  相似文献   
42.
Acoustic transmission measurements of compressional, P, and shear, S, wave velocities rely on correctly identifying the P- and S-body wave arrivals in the measured waveform. In cylindrical samples for which the sample is much longer than the acoustic wavelength, these body waves can be obscured by high-amplitude waveform features arriving just after the relatively small-amplitude P-body wave. In this study, a normal mode approach is used to analyze this type of waveform, observed in sediment containing gas hydrate or ice. This analysis extends an existing normal-mode waveform propagation theory by including the effects of the confining medium surrounding the sample, and provides guidelines for estimating S-wave velocities from waveforms containing multiple large-amplitude arrivals.  相似文献   
43.
Here we describe the nature and implications of the "concentration polarization" (CP) layer that is formed during ultrafiltration of colloidal particles using a new approach in which the solid pressure, which arises from inter-particle interactions, and the inherent osmotic pressure are separately considered. The approach makes use of the particle transport mass balance between the convective and diffusive fluxes. The particle convection rate is hindered when inter-particle interactions take effect by reducing the particle velocities while the particle diffusion is solely controlled by the Brownian motion. An increase in solid pressure accounts for the reduction of the water potential caused by the relative motions of the particles and the surrounding water. A cell model is adopted to relate the local solid pressure with the local solid fraction and inter-particle interactions. The inter-particle interactions critically determine the form of particle accumulation (i.e. CP or gel/cake) on the membrane. The Shirato-Darcy equation is employed to relate the rate of increase in solid pressure, the relative liquid velocity and the solid fraction. Numerical integration approaches are employed to quantify the properties of the CP layer during both the development as well as the steady state phases (with steady state normally being achieved in a few minutes). The solid fractions are always no higher than those obtained when the inter-particle interactions are not considered. The decrease of the water potential caused by CP formation leads to the increase of both the solid pressure and the osmotic pressure. The dependence of the solid pressure on the solid fraction is usually stronger than that of the osmotic pressure. It is thus apparent that the solid pressure would be expected to dominate water potential reduction for solid fractions above a certain value though the solid pressure will be negligible when the solid fraction is relatively low.  相似文献   
44.
This paper investigates the effective eddy viscosity inferred from direct numerical simulations of decaying stratified and non-stratified turbulence. It is shown that stratification affects the horizontal eddy viscosity dramatically, by increasing non-local energy transfer between large and small horizontal scales. This non-local horizontal energy transfer is around 20% of the local horizontal energy transfer at the cutoff wavenumber kc = 40. The non-local horizontal energy transfer occurs at large vertical wavenumbers, which may be larger than the buoyancy wavenumber kb = N/urms, where N is the buoyancy frequency and urms is the root-mean-square velocity. By increasing the value of the test cutoff wavenumber kc from large scales to the dissipation range, the non-local horizontal eddy viscosity decreases and the local eddy viscosity is dominant. Overall, the presence of stratification can significantly change the features of subgrid-scale (SGS) motions. Current SGS models should, therefore, be modified for use in large-eddy simulation of stratified turbulence.  相似文献   
45.
The outstanding mechanical properties of impact-bearing tissues, such as Nereis jaws, make their morphology and chemical composition a subject of particular interest. The complex structure of the jaw was recently reported to exhibit molecular gradients that were closely correlated with stiffness and hardness.(18) Accordingly, we have explored the spatial distribution and bonding chemistries of Zn and the halogens in the surface structure of the jaws. Using secondary ion mass spectrometry (SIMS) and scanning electron microscopy (SEM), we found that Cl, Br, and I distributions are enhanced in surface layers of the basal protected portion of the jaw but are shifted to greater depths toward the exposed jaw tip. There are thus two complementary halogen gradients in the jaw: one on the surface that decreases from the base to the tip, coupled to an increasing one in the subsurface layers. The outer surface coating appeared to have granular morphology, in contrast to the anisotropic, fibrous core that dominates the subarchitecture. Using X-ray photoelectron spectroscopy (XPS), we discovered that Zn, I, and Br in the jaws have single chemical environments whereas chlorine is present in two distinct modes (Cl-Zn and Cl-C). Given the inverse relationship between surface exposure and halogen abundance in the jaws, it is unlikely that the halogens contribute directly to mechanical properties such as wear and hardness.  相似文献   
46.
The kinetics of ligand exchange between ferric citrate and desferrioxamine B (DFB) was investigated at pH 8.0 and high citrate/Fe molar ratios (500-5000) with particular attention given to understanding the precise mechanism of ligand exchange. Ferric citrate complexes present in a test solution and therefore involved in the reaction with the incoming ligand (DFB) were initially examined by evaluating ferric citrate speciation on the basis of published thermodynamic constants. The speciation analysis indicated that mononuclear (mono- and dicitrate) ferric complexes are the major species responsible for the ligand exchange with DFB under the conditions examined in the present work. Given the tendency of DFB to adjunctively associate with the ferric citrate complexes, we propose a kinetic model containing the following three mechanisms: (i) direct association of DFB to the ferric dicitrate complex prior to any dissociation of citrate molecules from the Fe center, (ii) adjunctive association of DFB toward ferric monocitrate complex following dissociation of one molecule of citrate from the parent complex, and (iii) complexation of hydrated Fe by DFB after sequential dissociation of two molecules of citrate from the Fe center. Overall rates for the ligand exchange were determined by spectrophotometrically monitoring the formation of ferrioxamine B. Further analysis in quantifying the rate of each mechanism by use of published and determined rate constants of relevant elemental reactions suggested that the first and second mechanisms were significant under our experimental conditions where [Cit] ? [DFB] with the relative importance of these two pathways depending on citrate concentration.  相似文献   
47.
To improve our understanding of conformational transitions in proteins, we are attempting the de novo design of peptides that switch structural state. Here, we describe coiled-coil peptides with sequence and structural duality; that is, features compatible with two different coiled-coil motifs superimposed within the same sequence. Specifically, we promoted a parallel leucine-zipper dimer under reducing conditions, and a monomeric helical hairpin in an intramolecularly disulfide bridged state. Using an iterative process, we engineered peptides that formed stable structures consistent with both targets under the different conditions. Finally, for one of the designs, we demonstrated a one-way switch from the helical hairpin to the coiled-coil dimer upon addition of disulfide-reducing agents.  相似文献   
48.
The structure and hydraulic behaviour of colloidal montmorillonite assemblages formed during constant-pressure microfiltration of feed suspensions under various pH and ionic strengths have been investigated with flux versus time data analysed using both conventional cake filtration theory and a more rigorous sorptivity-diffusivity approach. Size distribution and fractal dimension analyses revealed a shift in assemblage structure from porous to compact as a result of a step-increase in electrolyte concentrations. The hydraulic conductivity of the filter cakes was dramatically affected by suspension ionic strength with significantly higher hydraulic conductivity observed at the higher ionic strengths compared to that observed at lower ionic strengths. Results obtained using the sorptivity-diffusivity model were consistent with conventional cake filtration theory and provided useful insights into the bulk properties of the filter cakes. Cake moisture ratio profiles of the montmorillonite system showed that high suspension ionic strength resulted in denser or less voluminous filter cakes that retained less water than was the case at the low ionic strength. These results suggest that, under low ionic strength conditions, the clay particles associate in suspension in assemblages of high aspect ratio which subsequently form highly "cross-linked" voluminous honeycomb type structures of low permeability once deposited upon the membrane. However, under sufficiently high ionic strength conditions, the high aspect ratio montmorillonite assemblages form nematic structures on deposition on the membrane that are denser yet more permeable than the structures formed at lower salt concentration. The distinct change in properties of the deposited clay on increase in salt concentration may well be indicative of transition from a gel to a nematically ordered phase.  相似文献   
49.
The lattice dynamics of InAs under variable hydrostatic pressures is investigated on the basis of an ‘11-parameter’ rigid-ion model (RIM). The calculated phonon dispersion curves are in satisfactory agreement with the neutron scattering data (available for the TA modes only) measured at room temperature and atmospheric pressure. The one- and two-phonon densities of states functions and mode Gruneisen parameters have been computed at two arbitrary hydrostatic pressures. The effect of high pressure on the phonon dispersion curves is shown to lead to a typical ‘softening’ in the transverse acoustic modes and eventually to a phase trnasformation of the compound.  相似文献   
50.
Pressure is accepted theoretically as a useful variable. However in a studies on liquid or solid samples, it is still relatively unusual for pressure to be used as an experimental variable. The reluctance of experimentalists to use this theoretically attractive variable is caused mainly by the technical difficulties associated with the use of sufficiently high pressures. In this talk I will try to show that in many cases the experimental limitations are no longer those introduced by the use of high pressures. High pressure spectroscopic studies clearly imply the use of high pressure spectroscopic cells. A brief account will therefore be given of the various types of high pressure optical cells which are currently being used for spectroscopic studies. Each individual high pressure spectroscopic study has its own special justification. However there are a few quite general observations that can be made which cover many of the specific objectives of individual high pressure spectroscopic studies. For example:(i) pressure induced frequency shifts carry unambiguous information about anharmonic terms in the relevant potential function (i.e. the potential V is a function of distance d. therefore pressure can be used to change d and study V.)(ii) all known materials undergo structural phase transitions if the form which is thermodynamically stable under ambient conditions is compressed to high enough pressures: these high pressure phases should be studied.(iii) as the application of pressure forces a material towards a phase transition, the spectroscopic study can be used to gain information about the approaching structural instability.(iv) virtually all infrared and Raman spectra contain examples of Fermi resonance which confuse the interpretation of the spectra and the effects of pressure are valuable aids to the correct assignment of the resonating levels.(v) pressure induced frequency shifts can often give extra information to help with the more reliable assignment of features within a spectrum.The above points will be discussed and illustrated by examples chosen mainly from recent work by members of the spectroscopy group at King's College London.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号