首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   2篇
化学   34篇
晶体学   1篇
力学   1篇
数学   6篇
物理学   45篇
  2017年   1篇
  2015年   3篇
  2012年   4篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   9篇
  1991年   2篇
  1989年   4篇
  1988年   4篇
  1987年   1篇
  1984年   1篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1957年   1篇
  1939年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
31.
32.
The decay-out process of the yrast superdeformed band in 59Cu has been investigated. The firm determination of spin, parity, excitation energy, and configuration of the states involved in this process constitutes a unique situation for a detailed understanding of the decay-out mechanism. A theoretical model is introduced that includes a residual interaction and tunneling matrix element between bands, calculated in the configuration-dependent cranked Nilsson-Strutinsky model. This interaction causes the decay to occur via a small number of observed doorway states.  相似文献   
33.
34.
35.
The proton stripping reaction98Mo(3He,d)99Tc is studied with 18 MeV3He ion beam. The out-going deuterons from the reaction are analysed using an Enge magnetic spectrograph. The experimental angular distributions are compared with distorted-wave-Born-approximation calculations, andl-values and spectroscopic factors are obtained. Many of the previous spin-parity assignments for the low-lying states in99Tc are confirmed and new ones are made. The proton configuration for the ground state of98Mo is deduced.  相似文献   
36.
Typical melting curves, chosen from the results of more than 125 melting-point studies, are presented to illustrate both the reliability and the inherent limitations of the calorimetric method of purity determination. It is shown that this method usually is one of the best means of accurately determining small concentrations of impurity. However, analysis of anomalous melting curves leads to the conclusion that pseudo-equilibrium curves are often obtained as a result of inhomogeneous distribution of impurity in the liquid phase or of non-equilibrium distribution of impurity between the solid and liquid phases. Evidence is given to support the contention that solidsolutions were formed in as many as half of the samples studied and that for this reason, impurity values calculated for perhaps 13 of the samples are in error by 200% or more. Although these large uncertainties in impurity values usually correspond to less than 0.1 % uncertainty in purity values, modified procedures are proposed to minimize such errors.  相似文献   
37.
38.
Here, a new amphiphilic magnetic resonance imaging (MRI) contrast agent, a GdIII‐chelated diethylenetriaminepentaacetic acid conjugated to two branched alkyl chains via a dopamine spacer, Gd‐DTPA‐dopamine‐bisphytanyl (Gd‐DTPA‐Dop‐Phy), which is readily capable of self‐assembling into liposomal nanoassemblies upon dispersion in an aqueous solution, is reported. In vitro relaxivities of the dispersions were found to be much higher than Magnevist, a commercially available contrast agent, at 0.47 T but comparable at 9.40 T. Analysis of variable temperature 17O NMR transverse relaxation measurements revealed the water exchange of the nanoassemblies to be faster than that previously reported for paramagnetic liposomes. Molecular reorientation dynamics were probed by 1H NMRD profiles using a classical inner and outer sphere relaxation model and a Lipari–Szabo “model‐free” approach. High payloads of GdIII ions in the liposomal nanoassemblies made solely from the Gd‐DTPA‐Dop‐Phy amphiphiles, in combination with slow molecular reorientation and fast water exchange makes this novel amphiphile a suitable candidate to be investigated as an advanced MRI contrast agent.  相似文献   
39.
High-throughput methodologies have been employed to establish structure-property relationships and assess the effectiveness of nonionic steric stabilizers for inverse bicontinuous cubic lyotropic liquid crystalline nanoparticulate dispersions of monoolein and phytantriol. The ability of the stabilizers to disperse the lipids was compared with that of the commonly employed triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) copolymer Pluronic F127, which was used as a positive control. The poly(ethylene oxide) stearate class of stabilizers (commercially known as Myrj) were discovered to be effective as steric stabilizers for cubosomes, while retaining the internal nanostructure of the "parent" bulk phase. In particular, Myrj 59, with an average of 100 poly(ethylene oxide) units, was more effective than F127 at dispersing phytantriol, forming stable phytantriol cubosome dispersions at a concentration of 0.1 wt %, 5-fold lower than that achievable with Pluronic F127. The discovery of this new effective class of stabilizers for cubosomes, specifically enabled by high-throughput approaches, broadens the versatility of components from which to construct these interesting potential drug delivery and medical imaging nanoparticles.  相似文献   
40.
This work reports for the first time a simple and effective approach to trigger a spheres‐to‐ vesicles morphological transition from amphiphilic block copolymer/polyelectrolyte complexes in aqueous solution. Vesicles and large compound vesicles (LCVs) were prepared via complexation of polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) with poly(acrylic acid) (PAA) in water and directly visualized using cryo‐TEM. The complexation and morphological transitions were driven by the hydrogen bonding between the complementary binding sites on the PAA and PEO blocks of the block copolymer. The findings in this work suggest that complexation between amphiphilic block copolymer and polyelectrolyte is a viable approach to vesicles and LCVs in aqueous media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号